signatures of cosmic neutrinos on cosmic microwave
play

Signatures of Cosmic Neutrinos on Cosmic Microwave Background Zhen - PowerPoint PPT Presentation

Signatures of Cosmic Neutrinos on Cosmic Microwave Background Zhen Pan University of California, Davis Dec 16, 2015 @ ACFI, Umass Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 1 / 10 Outline


  1. Signatures of Cosmic Neutrinos on Cosmic Microwave Background Zhen Pan University of California, Davis Dec 16, 2015 @ ACFI, Umass Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 1 / 10

  2. Outline Background Information I. brief history of the universe II. temperature power spectrum: 6000 acoustic oscillation, diffusion damping D TT 5000 ℓ 4000 Planck 2015 Signatures of Neutrinos (number) 3000 2000 I. on background: diffusion damping 1000 II. on perturbation: phase shift 200 0 150 100 50 0 50 Signatures of Neutrinos (mass) 100 150 200 0 500 1000 1500 2000 2500 I. on background: expansion history ℓ II. on perturbation: large scale structure Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 2 / 10

  3. Y ℓm ( θ,φ ) ∼ cos( ℓθ ) λ/ 2 = π/k last scattering surface η 0 − η θ ∼ π/ℓ Observer Background Information: a brief introduction Recombination z ≃ 1100 Before Recombination: γ + e − → γ + e − z ≃ 1100 Recombination: e − + p → H After Recombination: γ → γ Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 3 / 10

  4. Y ℓm ( θ,φ ) ∼ cos( ℓθ ) λ/ 2 = π/k last scattering surface η 0 − η θ ∼ π/ℓ Observer Background Information: a brief introduction Recombination z ≃ 1100 Before Recombination: γ + e − → γ + e − z ≃ 1100 Recombination: e − + p → H After Recombination: γ → γ Projection Θ ≡ δ T / T Θ(ˆ γ ) | � x =0 ,η = η 0 ≃ Θ 0 | ˆ γ ( η 0 − η ⋆ ) Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 3 / 10

  5. Background Information: a brief introduction Recombination z ≃ 1100 Before Recombination: γ + e − → γ + e − z ≃ 1100 Recombination: e − + p → H Y ℓm ( θ,φ ) ∼ cos( ℓθ ) After Recombination: γ → γ λ/ 2 = π/k Projection last scattering surface Θ ≡ δ T / T η 0 − η Θ(ˆ γ ) | � x =0 ,η = η 0 ≃ Θ 0 | ˆ θ ∼ π/ℓ γ ( η 0 − η ⋆ ) m = ℓ Observer ∞ � � Θ(ˆ γ ) | � x =0 ,η = η 0 = a ℓ m Y ℓ m (ˆ γ ) Figure : Θ 2 0 ( k , η ⋆ ) ≃ C TT ℓ =1 m = − ℓ ℓ ≃ k ( η 0 − η ⋆ ) � a ℓ m a ⋆ ℓ ′ m ′ � = δ ℓℓ ′ δ mm ′ C TT ℓ Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 3 / 10

  6. acoustic oscillation + diffusion damping Tight Coupling Approximation (TCA): r mfp ≪ λ Θ 0 + k 2 c 2 ¨ s Θ 0 = − k 2 Φ + Inflation inspired initial conditions: Θ 0 ( η = 0) = ..., ˙ Θ 0 ( η = 0) = 0 . � Θ 0 ∼ cos ( k c s d η ) = cos ( kr s ( η )) Taking diffusion into account: r d ∝ √ η ∼ � 1 / H Hou et.al. (2011) Θ 0 ∼ cos ( kr s ) e − ( kr d ) 2 Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 4 / 10

  7. acoustic oscillation + diffusion damping Tight Coupling Approximation (TCA): r mfp ≪ λ Θ 0 + k 2 c 2 ¨ s Θ 0 = − k 2 Φ + Inflation inspired initial conditions: Θ 0 ( η = 0) = ..., ˙ Θ 0 ( η = 0) = 0 . � Θ 0 ∼ cos ( k c s d η ) = cos ( kr s ( η )) Taking diffusion into account: r d ∝ √ η ∼ � 1 / H Hou et.al. (2011) Θ 0 ∼ cos ( kr s ) e − ( kr d ) 2 N ν → H → r d → e − ( kr d ) 2 Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 4 / 10

  8. phase shift Forced Oscillator: ¨ Θ 0 + k 2 c 2 s Θ 0 = − k 2 Φ + Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 5 / 10

  9. phase shift Forced Oscillator: ¨ Θ 0 + k 2 c 2 s Θ 0 = − k 2 Φ + � kr s d ( kr ′ s )Φ + ( kr ′ s ) sin( kr s − kr ′ Θ 0 ( kr s ) = Θ 0 (0) cos( kr s ) − s ) , 0 Θ 0 ∼ cos( kr s + θ ) Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 5 / 10

  10. phase shift Forced Oscillator: ¨ Θ 0 + k 2 c 2 s Θ 0 = − k 2 Φ + � kr s d ( kr ′ s )Φ + ( kr ′ s ) sin( kr s − kr ′ Θ 0 ( kr s ) = Θ 0 (0) cos( kr s ) − s ) , 0 Θ 0 ∼ cos( kr s + θ ) Neglecting Neutrinos: k 2 Φ + ∝ ρ γ δ γ , v p ( γ ) = c s θ ( η → ∞ ) = 0 Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 5 / 10

  11. phase shift Forced Oscillator: ¨ Θ 0 + k 2 c 2 s Θ 0 = − k 2 Φ + � kr s d ( kr ′ s )Φ + ( kr ′ s ) sin( kr s − kr ′ Θ 0 ( kr s ) = Θ 0 (0) cos( kr s ) − s ) , 0 Θ 0 ∼ cos( kr s + θ ) Neglecting Neutrinos: k 2 Φ + ∝ ρ γ δ γ , v p ( γ ) = c s θ ( η → ∞ ) = 0 Including Neutrinos: k 2 Φ + ∝ ( ρ γ δ γ + ρ ν δ ν ) , v p ( ν ) = c > c s θ ( η → ∞ ) = 0 . 19 π R ν + O ( R 2 ν ) Bashinsky (2004,2007), Baumann et.al. (2015) Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 5 / 10

  12. Signatures of neutrinos (number) Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 6 / 10

  13. Signatures of neutrinos (number) Planck13 TT N δφ = 3 . 50 ± 0 . 65 Follin ,.., Pan (2015) ν Planck XVI (2013) N δφ + δθ D = 3 . 36 ± 0 . 33 ν Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 6 / 10

  14. Signatures of neutrinos (number) Planck13 TT Planck15 TT, EE,TE N δφ N δφ = 3 . 50 ± 0 . 65 = 2 . 99 ± 0 . 30 Follin ,.., Pan (2015) ν Baumann et.al. (2015) ν Planck XVI (2013) N δφ + δθ D Planck III (2015) N δφ + δθ D = 3 . 36 ± 0 . 33 = 2 . 99 ± 0 . 20 ν ν Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 6 / 10

  15. Signatures of neutrinos (mass) 1.04 DESI 1.02 ( H ( z ) r s ) fid Expansion History: H ( z ) r s 1.00 0.98 rs ,⋆ DA ,⋆ = (1 . 04096 ± 0 . 00032) × 10 − 2 (Planck 2015) θ s ,⋆ ≡ 0.96 0.94 � z ⋆ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 dz 1.04 D A ,⋆ = ( D A ( z ) /r s ) fid 1.02 H ( z ) D A ( z ) /r s 0 1.00 0.98 ( M ν ↑ +Ω Λ ↓ ) ⇒ Fixing θ s ,⋆ 0.96 M ν =50 meV M ν =100 meV M ν =200 meV 0.94 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 z Pan and Knox (2015) Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 7 / 10

  16. Signatures of neutrinos (mass) 1.04 DESI 1.02 ( H ( z ) r s ) fid Expansion History: H ( z ) r s 1.00 0.98 rs ,⋆ DA ,⋆ = (1 . 04096 ± 0 . 00032) × 10 − 2 (Planck 2015) θ s ,⋆ ≡ 0.96 0.94 � z ⋆ 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 dz 1.04 D A ,⋆ = ( D A ( z ) /r s ) fid 1.02 H ( z ) D A ( z ) /r s 0 1.00 0.98 ( M ν ↑ +Ω Λ ↓ ) ⇒ Fixing θ s ,⋆ 0.96 M ν =50 meV M ν =100 meV M ν =200 meV 0.94 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 z Pan and Knox (2015) ω m and M ν are negatively correlated from BAO. Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 7 / 10

  17. Signatures of neutrinos (mass) Structure Growth: r fs ∼ vt ∼ T ν ( z ) 1 M ν H ( z ) > r fs neutrinos cluster < r fs neutrinos freely stream Wu et.al (2014) Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 8 / 10

  18. Signatures of neutrinos (mass) Structure Growth: r fs ∼ vt ∼ T ν ( z ) 1 M ν H ( z ) > r fs neutrinos cluster < r fs neutrinos freely stream Wu et.al (2014) ω m and M ν are positively correlated from lensing. Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 8 / 10

  19. Contraints on M ν 0.1445 0.1440 0.1435 σ ( M ν ) = 38 meV ω m 0.1430 CMB-S4 σ ( M ν ) = 15 meV 0.1425 + DESI BAO 0.1420 σ ( M ν ) = 9 meV + DESI RSD CMB − S4 0.1415 CMB − S4 +DESI BAO CMB − S4 +DESI BAO +DESI RSD 0.1410 0.00 0.05 0.10 0.15 0.20 M ν [eV] Pan and Knox (2015) Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 9 / 10

  20. Summary � m i �� � σ m i CMB − S 4+ DESI BAO = 15 meV ∆ m 2 � � + neutrino oscillation experiments → m i ij Model dependent (flat ΛCDM model). Degeneracy with Ω k , w broken by external datasets ? N ν ( δθ D , δφ ) N δφ = 2 . 99 ± 0 . 30 | Planck 2015 TT , TE , EE ν Implications : consistent with 3 . 046 neutrinos , no sign of ν ¯ ν interaction σ ( N δφ ν ) cosmic variance limit ≈ 0 . 05 Zhen Pan University of California, Davis CMB & Cosmic Neutrinos Dec 16, 2015 @ ACFI, Umass 10 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend