shaikh saad
play

Shaikh Saad Based on: arXiv:2004.07880 (Saad, A. Thapa) : - PowerPoint PPT Presentation

Radiative Neutrino Mass Models and ( g 2) , R K ( ) , R D ( ) Anomalies Shaikh Saad Based on: arXiv:2004.07880 (Saad, A. Thapa) : arXiv:2005.04352 (Saad) Saad ( g 2) , R K ( ) , R D ( ) , M 1 / 45 Outline Muon


  1. Radiative Neutrino Mass Models and ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) Anomalies Shaikh Saad Based on: arXiv:2004.07880 (Saad, A. Thapa) : arXiv:2005.04352 (Saad) Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 1 / 45

  2. Outline Muon anomalous magnetic moment: ∆ a µ Flavor anomalies: R K ( ∗ ) , R D ( ∗ ) Neutrino mass Proposals (Model-I, Model-II) Summary *Talk intended for the graduate students, faculties may find it trivial Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 2 / 45

  3. ( g − 2) µ Dirac’s relativistic wave equation formulation: 1928 Muon magnetic moment: � 2 m µ � e M = g µ S Land´ e g-factor: g µ = 2 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 3 / 45

  4. ( g − 2) µ Quantum loop corrections: g µ � = 2 Bethe (1947) did before Schwinger (1948), but in non-relativistic framework Anomalous magnetic moment: a µ = g µ − 2 2 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 4 / 45

  5. ( g − 2) µ a exp − a SM ≡ ∆ a µ = (274 ± 73) × 10 − 11 ∼ 3 . 7 σ µ µ Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 5 / 45

  6. R K ( ∗ ) b → s : Neutral current process ∗ µ + µ − ) R K = Γ( B → K µ + µ − ) R K ∗ = Γ( B → K Γ( B → Ke + e − ) , . ∗ e + e − ) Γ( B → K R SM R SM = 1 . 0003 ± 0 . 0001 , K ∗ = 1 . 00 ± 0 . 01 K Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 6 / 45

  7. R K ( ∗ ) Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 7 / 45

  8. R K ( ∗ ) LHCb, arXiv:1903.09252 − 0 . 054 − 0 . 014 , 1 . 1 GeV 2 < q 2 < 6 . 0 GeV 2 R exp = 0 . 846 +0 . 06+0 . 016 K Belle, arXiv:1904.02440 � − 0 . 21 ± 0 . 10 , 0 . 1 GeV 2 < q 2 < 8 . 0 GeV 2 0 . 90 +0 . 27 R exp K ∗ = − 0 . 32 ± 0 . 10 , 15 GeV 2 < q 2 < 19 GeV 2 1 . 18 +0 . 52 LHCb, arXiv:1705.05802 − 0 . 070 ± 0 . 024 , 0 . 045 GeV 2 < q 2 < 1 . 1 GeV 2 � 0 . 660 +0 . 110 R exp K ∗ = − 0 . 069 ± 0 . 047 , 1 . 1 GeV 2 < q 2 < 6 . 0 GeV 2 0 . 685 +0 . 113 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 8 / 45

  9. R K ( ∗ ) R K ∼ 2 . 5 σ ∼ 2 . 5 σ (LHCb) R K ∗ ′ ′ Angular observables: P 4 , P 5 B s → µµ (ATLAS, CMS, LHCb) and more ... Combined: ∼ 4 . 5 σ Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 9 / 45

  10. R D ( ∗ ) b → c : Charged current process R D = Γ( B → D τν ) R D ∗ = Γ( B → D ∗ τν ) Γ( B → D ℓν ) , Γ( B → D ∗ ℓν ) R SM R SM = 0 . 299 ± 0 . 003 , D ∗ = 0 . 258 ± 0 . 005 D Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 10 / 45

  11. R D ( ∗ ) Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 11 / 45

  12. R D ( ∗ ) Global average: (Belle, BaBar, LHCb) R exp R exp = 0 . 334 ± 0 . 031 , D ∗ = 0 . 297 ± 0 . 015 D R D , R D ∗ ∼ 3 σ R J /ψ , f D ∗ L , P 8 τ and more ... Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 12 / 45

  13. Neutrino Mass In SM, neutrino mass = 0 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 13 / 45

  14. Synopsis SM cannot explain neutrino oscillation data Long-standing tension in ( g − 2) µ Large deviations in flavor ratios Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 14 / 45

  15. Solution? ✗ Standard Model ✓ Physics Beyond the Standard Model Can all these be related? Combined explanations? ✓ Scalar Leptoquarks ➸ Which Leptoquarks? Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 15 / 45

  16. LQ Solution: ( g − 2) µ ✓ S 1 ∼ (3 , 1 , 1 / 3) γ q i φ 1 / 3 ℓ ℓ γ φ 1 / 3 q i ℓ ℓ ∆ a µ ≃ − 3 m t m µ � 7 6 + 2 � y L 32 y R 3 log[ x t ] . 32 M 2 8 π 2 1 R 2 ∼ (3 , 2 , 7 / 6) ✓ Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 16 / 45

  17. LQ Solution: Flavor anomalies arXiv:1808.08179 ✗ Single LQ Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 17 / 45

  18. Two possibilities ✓ R 2 ∼ (3 , 2 , 7 / 6) + S 3 ∼ (3 , 3 , 1 / 3) : Model-I S 1 ∼ (3 , 1 , 1 / 3) + S 3 ∼ (3 , 3 , 1 / 3) : Model-II ✓ Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 18 / 45

  19. Model-I R 2 ∼ (3 , 2 , 7 / 6) + S 3 ∼ (3 , 3 , 1 / 3) Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 19 / 45

  20. R K ( ∗ ) Wolfgang S 3 ∼ (3 , 3 , 1 / 3) C µµ = − C µµ 10 = − 0 . 53 arXiv:1903.10434 9 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 20 / 45

  21. R K ( ∗ ) S 3 ∼ (3 , 3 , 1 / 3) � � � = − 4 G F C ij ,ℓℓ ′ O ij ,ℓℓ ′ H dd ℓℓ √ V tj V ∗ + h . c ., eff ti X X 2 X =9 , 10 = α = α O ij ,ℓℓ ′ , O ij ,ℓℓ ′ d i γ µ P L d j d i γ µ P L d j � � � ℓγ µ ℓ ′ � � � � ℓγ µ γ 5 ℓ ′ � . 9 10 4 π 4 π � ∗ v 2 y S � y S π C ℓℓ ′ = − C ℓℓ ′ b ℓ ′ s ℓ 10 = . 9 M 2 V tb V ∗ α em ts 3 C µµ = − C µµ 10 = − 0 . 53 arXiv:1903.10434 9 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 21 / 45

  22. R D ( ∗ ) R 2 ∼ (3 , 2 , 7 / 6) = 4 G F H du ℓν � C fi � ℓ L γ µ ν Li � ( c L γ µ b L ) + C fi � � √ V cb ℓ Rf ν Lj ( c R b L ) eff V S 2 ℓ Rf σ µν ν Li + C fi � � � ( c R σ µν b L ) + T y L cj ( y R ˆ b τ ) ∗ C j S ( µ = m R ) = 4 C j √ T ( µ = m R ) = . 2 m 2 4 R G F V cb C S = 4 C T Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 22 / 45

  23. μ R D ( ∗ ) R 2 ∼ (3 , 2 , 7 / 6) : C S = 4 C T 0.6 μ = m R 1.0 C S = 4 C T 0.4 0.5 0.2 μ = m R τ ] C S = 4 C T Im [ C S C S 0.0 0.0 - 0.2 - 0.5 - 0.4 - 1.0 - 0.6 - 0.6 - 0.4 - 0.2 0.0 0.2 0.4 - 0.6 - 0.4 - 0.2 0.0 0.2 0.4 0.6 e Re [ C S τ ] C S Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 23 / 45

  24. Model-II S 1 ∼ (3 , 1 , 1 / 3) + S 3 ∼ (3 , 3 , 1 / 3) Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 24 / 45

  25. R D ( ∗ ) S 3 ∼ (3 , 3 , 1 / 3) + S 1 ∼ (3 , 1 , 1 / 3) = 4 G F H du ℓν C fi ℓ L γ µ ν Li ( c L γ µ b L ) + C fi � � � � � √ V cb ℓ Rf ν Lj ( c R b L ) eff V S 2 + C fi � ℓ Rf σ µν ν Li � � ( c R σ µν b L ) + T y R � ∗ � y L T = − v 2 bi C fi S = − 4 C fi cf , M 2 4 V cb 1 � V ∗ y L � ∗ V ∗ y S � ∗ � y L � − y S � v 2 bi bi C fi cf cf V = . M 2 M 2 4 V cb 1 3 C S = − 4 C T Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 25 / 45

  26. Neutrino mass? ✗ R 2 ∼ (3 , 2 , 7 / 6) + S 3 ∼ (3 , 3 , 1 / 3) : Model-I S 1 ∼ (3 , 1 , 1 / 3) + S 3 ∼ (3 , 3 , 1 / 3) : Model-II ✗ Minimal choice: single scalar Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 26 / 45

  27. Model-I: Neutrino mass R 2 ∼ (3 , 2 , 7 / 6) + S 3 ∼ (3 , 3 , 1 / 3) + χ 1 ∼ (3 , 1 , 2 / 3) � H 0 � � H 0 � � H 0 � χ 2 / 3 R 2 / 3 S − 2 / 3 ν L u L ν L u R arXiv: 1907.09498 µλ v 3 1 M ν � ( y L ) ∗ ki m u � k ( V ∗ y ) kj + ( i ↔ j ) ij = m 0 ; m 0 ≈ M 2 1 M 2 16 π 2 2 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 27 / 45

  28. Model-I: Combined explanations TX-I :       0 0 0 0 0 0 0 0 0 y R =  , y L =  , y =  . 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗    0 0 ∗ 0 0 ∗ 0 ∗ 0 TX-II :       0 0 0 0 0 0 0 0 0 y R =  , y L =  , y =  . 0 0 0 ∗ ∗ ∗ 0 ∗ ∗    0 0 ∗ 0 0 ∗ ∗ ∗ 0 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 28 / 45

  29. Model-I Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 29 / 45

  30. LHC bounds LHC (ATLAS, CMS) Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 30 / 45

  31. Model-I: BM-TX-I M 2 = 1 . 2 TeV, M 3 = 2 . 5 TeV   0 0 0 y R =  , 0 0 0  0 0 1 . 09527 i   0 0 0 y L =  , 4 . 0503 × 10 − 3 − 2 . 1393 × 10 − 2 1 . 2243  − 4 . 9097 × 10 − 4 0 0   0 0 0  , − 4 . 5241 × 10 − 4 − 7 . 7187 × 10 − 3 − 4 . 6354 × 10 − 4 y =  6 . 8578 × 10 − 1 0 0 m 0 = 1 . 297 × 10 − 8 . Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 31 / 45

  32. Model-I: BM fits Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 32 / 45

  33. Model-I 10 - 12 10 - 13 CR ( μ -> e ) 10 - 14 10 - 15 10 - 16 TX - I 10 - 17 - 0.60 - 0.55 - 0.50 - 0.45 C 9 =- C 10 Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 33 / 45

  34. Model-I 10 - 12 10 - 13 CR ( μ -> e ) 10 - 14 10 - 15 10 - 16 10 - 17 TX - I 10 - 14 10 - 12 10 - 10 10 - 8 Br ( τ -> μγ ) Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 34 / 45

  35. Model-I 0.34 60 % 0.32 R D * 0.30 30 % 0.28 10 % 0.26 TX - I 0.30 0.32 0.34 0.36 0.38 0.40 R D Br ( B c → τν )% Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 35 / 45

  36. Model-II: Neutrino mass S 1 ∼ (3 , 1 , 1 / 3) + S 3 ∼ (3 , 3 , 1 / 3) + ω ∼ (6 , 1 , 2 / 3) φ 1 / 3 φ 1 / 3 ω 2 / 3 ν L d L d R d R d L ν L Babu, Leung 2001 � M 2 1 1 � ij = 24 µ p y p lk I p kk y p I p DQ M ν li m d ll y ω lk m d kj ; lk = I 256 π 4 M 2 M 2 p p Saad ( g − 2) µ , R K ( ∗ ) , R D ( ∗ ) , M ν 36 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend