set cover in sub linear time
play

Set Cover in Sub-linear Time Piotr Indyk Sepideh Mahabadi Ronitt - PowerPoint PPT Presentation

Set Cover in Sub-linear Time Piotr Indyk Sepideh Mahabadi Ronitt Rubinfeld MIT Columbia University MIT/TAU Ali Vakilian Anak Yodpinyanee MIT MIT Set Cover Problem Input: Collection of sets 1 , , , each a subset of


  1. Set Cover in Sub-linear Time Piotr Indyk Sepideh Mahabadi Ronitt Rubinfeld MIT Columbia University MIT/TAU Ali Vakilian Anak Yodpinyanee MIT MIT

  2. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 2 5 1 3

  3. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 3

  4. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 Complexity : β€’ NP-hard 3

  5. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 Complexity : β€’ NP-hard 3 β€’ Greedy (ln π‘œ) -approximation algorithm

  6. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 Complexity : β€’ NP-hard 3 β€’ Greedy (ln π‘œ) -approximation algorithm β€’ Can’t do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14]

  7. Set Cover Problem Input: Collection β„± of sets 𝑇 1 , … , 𝑇 𝑛 , each a subset of 𝒱 = {1, … , π‘œ} 4 Output: a subset π’Ÿ of β„± such that: β€’ π’Ÿ covers 𝒱 2 β€’ | π’Ÿ | is minimized 5 1 Complexity : β€’ NP-hard 3 β€’ Greedy (ln π‘œ) -approximation algorithm β€’ Can’t do better unless P=NP [LY91][RS97][Fei98][AMS06][DS14] β€œIs it possible to solve minimum set cover in sub-linear time ?”

  8. Sub-linear Time Set Cover Data Access Model ?

  9. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇

  10. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs

  11. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐

  12. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐 Prior Results

  13. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐 Prior Results  [Nguyen, Onak ’08][Yoshida, Yamamoto, Ito’12]  Constant queries, if degree is constant

  14. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐 Prior Results  [Nguyen, Onak ’08][Yoshida, Yamamoto, Ito’12]  Constant queries, if degree is constant  [Koufogiannakis , Young’14][ Grigoriadis , Kachiyan’95]:  Find (1 + πœ—) -approximate fractional solution , then perform randomized rounding to achieve 𝑃(log π‘œ) -approximation

  15. Sub-linear Time Set Cover Data Access Model [NO’08,YYI’12] EltOf (𝑻, 𝒋) : 𝑗 th element in 𝑻 β€’ No assumption on the order SetOf (𝒇, π’Œ) : π‘˜ th set containing 𝒇 β€’ Incidence list in (sub-linear) algorithms for graphs β€’ Sublinear in 𝒏𝒐 Prior Results  [Nguyen, Onak’08][Yoshida, Yamamoto, Ito’12]  Constant queries, if degree is constant  [Koufogiannakis , Young’14][ Grigoriadis , Kachiyan’95]:  Find (1 + πœ—) -approximate fractional solution , then perform randomized rounding to achieve 𝑃(log π‘œ) -approximation  𝑃(𝑛𝑙 2 + π‘œπ‘™ 2 ) (can be improved to 𝑃(𝑛 + π‘œπ‘™) ) 𝒐 = number of elements 𝒏 = number of sets 𝒍 = size of the optimal solution

  16. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  17. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  18. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  19. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  20. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  21. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  22. Results Problem Approximation Constraints Query Complexity 1 π‘œ π›½βˆ’1 + π‘œπ‘™ π›½πœ + 1 𝛽 β‰₯ 2 𝑃 𝑛 𝑙 𝑃 π‘›π‘œ 𝜍 + 1 βˆ’ 𝑙 Set Cover 1 1 π‘œ 4𝛽+1 π‘œ 2𝛽 𝛽 𝑙 ≀ Ξ© 𝑛 log 𝑛 𝑙 Ξ© π‘›π‘œ 𝛽 ≀ 1.01 𝛽 𝑙 = 𝑃(π‘œ/ log 𝑛) 𝑙 Cover Verification βˆ’ 𝑙 ≀ π‘œ/2 Ξ©(π‘œπ‘™) Cover Verification : given a set system, verify whether a given sub-collection of sets covers the universe. 𝝇 = approximation factor for offline Set Cover 𝒐 = number of elements 𝒏 = number of sets 𝒍 = Size of the optimal Solution

  23. Part one: upper bound Theorem: There exists an algorithm that with high probability 𝑃(𝒏𝒐 𝟐/𝜷 + 𝒐𝒍) finds an O(πœπ›½) -approximate cover which uses number of queries.

  24. Part one: upper bound Theorem: There exists an algorithm that with high probability 𝑃(𝒏𝒐 𝟐/𝜷 + 𝒐𝒍) finds an O(πœπ›½) -approximate cover which uses number of queries. 1. Two simple components used for coverage problems in massive data models. β€’ Set Sampling β€’ Element Sampling 2. The algorithm overview

  25. Component I: set sampling Set Sampling: After picking β„“ sets uniformly at random, all m log π‘œ elements with degree at least are covered w.h.p. β„“ β€’ We only need to worry about low degree elements.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend