self assembly dynamics of linear virus like
play

Self-Assembly Dynamics of Linear Virus-like Particles: Theory and - PowerPoint PPT Presentation

Self-Assembly Dynamics of Linear Virus-like Particles: Theory and Experiment TMV Model 200 nm VLP Paul van der Schoot www.virology.wisc.edu/virusworld Collaborators Experiments Theory Armando Renko Daniela Melle Willem


  1. Self-Assembly Dynamics of Linear Virus-like Particles: Theory and Experiment TMV Model 200 nm VLP Paul van der Schoot www.virology.wisc.edu/virusworld

  2. Collaborators Experiments Theory Armando Renko Daniela Melle Willem Hernandez-Garcia de Vries Kraft Punter Kegel Funding:

  3. Simple viruses www.apsnet.org/edcenter/intropp/lessons/viruses/pages/tobaccomosaic.aspx CCMV TMV www.vcbio.science.ru.nl/en/fesem/tem/ 100 nm ss RNA coat protein ss RNA coat protein (3000 nts) (180 copies) (6400 nts) (2100 copies) deskeng.com/articles/aaahnd.htm www.sweetpics.site/t/tobacco-mosaic-virus-model.html

  4. Random templated assembly? stacking  - 5 k B T binding  - 10 k B T enthalpy competition!  - 20 k B T T = 263 K [dT q ] = 0.25 mM [G]/[dT q ]= 40 templated theory theory assembly self-assembly Janssen et al. JACS 131 (2009), 1222. Jabbari et al. Macromol. 43 (2010), 5833.

  5. Directional self-assembly of TMV PMV, CYMV, PRSV, TRV… 6400 nt OAS = packaging signal W 18 kDa 3’ 5’ coat protein cap lockwasher 34 cp bilayer disk OAS growing allosteric helical binding virus “threading” Lebeurier et al. PNAS 74 (1977), 149. http://www.rsc.org/ej/CS/2001 Chandrika et al. Virol 273 (2000) 198 Caspar Biophys J 32 (1980) 103 Koch et al. Beilstein J. Nanotechnol. 7 (2016) , 613.

  6. Engineering directional assembly g < 0 → templated assembly random binding templated interaction → co -operativity assembly → self-assembly 𝜁 < 0 𝜁 < 0 directional → suppresses self-assembly switching templated assembly → co -operativity allostery ℎ > 0           mass action → * S exp g / P P P equilibrium statistical    T  P ( n ) stoichiometry → / distribution P mechanics        co-operativity → exp h rate        non-equilibrium k ( n ) k ( n ) exp[ g ( h ) ] P ( n , t )   n , 1 equations distribution Punter et al. J Phys Chem B 120 (2016), 6286.

  7. The advantages of zipping… ∗ 𝑇 = 𝜚 𝑄 /𝜚 𝑄 mass action intermediates are suppressed 1.05 stoichiometry    T  / P sharp transition 1.02 1.00 co-operativity  0.98 longer template q binding affinity increases co-operativity Kraft et al. Biophys J 102 (2012), 2845. Punter et al. J Phys Chem B 120 (2016), 6286.

  8. Zipper dynamics excess template q = 51 𝜏 = 0.007 𝑇 = 𝑓 2 overshoot! excess protein undershoot! overshoot! 𝜐 ≡ 𝑙 + 𝜚 𝑄 t Punter et al. J Phys Chem B 120 (2016), 6286.

  9. Our model triblock coat protein C-S n -B TMV coat protein template binding basic block B: K 12 protein silk-like block S n : interaction (GAGAGAGQ) n template shielding protein 𝑜 ≥ 10 binding interaction 2.5 kbp 2.5 kbp dsDNA shielding dsDNA collagen-like block C: hydrophilic random coil (400 amino acids) 300 nm 200 nm Garcia-Hernandez et al. Nature Nano 9 (2014), 698.

  10. Comparison with experiments λ = 0.101 λ = 0.134 C-S 10 -B C-S 14 -B theory: q = 417 C-S 10 -B C-S 14 -B TMV 500 nm ϵ + g (k B T) −17 −17 −17 h − ϵ (k B T) 6 3 7 k + (min −1 ) 4 × 10 9 4 × 10 9 3 × 10 8 200 nm 2.5 kDa DNA c DNA = 0.65 nM Punter et al. J Phys Chem B 120 (2016), 6286. Kraft et al. Biophys J 102 (2012), 2845.

  11. Things get yet more complicated… polyfluorene: optomechanical proxy genome C-S 10 -B : 50 fraction taut  T = 0.06 m M  T = 0.6 m M Joris Sprakel 1 𝑔 + ≡ zipping 1 + 𝜇 excess protein! Garcia-Hernandez et al. Nature Nano 9 (2014), 698. Langmuir • parasitic self-assembly • co-assembly templates nucleation Cigil et al. J. Am. Chem. Soc. 139 (2017), 4962

  12. Things get yet more complicated… polyfluorene: optomechanical proxy genome C-S 10 -B : Joris Sprakel fraction taut excess protein! FRET efficiency 𝑔 + = 0.1 𝑔 + = 0. 3 𝑔 + = 0.5 𝑔 + = 0.7 self-assembly co-assembly Cigil et al. J. Am. Chem. Soc. 139 (2017), 4962

  13. Langmuir, Zipper & Micelle dynamics… coat protein micelle ⇄ ⇄ OAS Sander Kuipers ⇄ template Langmuir Zipper critical concentrations mass action aggregate sizes co-operativity       e    q 50 0 * 12 * 2 / e T , P , Z P P Z    q 5    e 0 . 2 * 11 M P , L    e * 9 P , M excess protein!

  14. Langmuir, Zipper & Micelle dynamics… fraction packaged templates sites     e 9 k / k M Z  7 e  5 e Sander Kuipers Langmuir  3 e zipper    k L k / 1 Z dimensionless time Kuipers, bachelor thesis (Utrecht U, 2017)

  15. Conclusions • Protein polymers can be designed to mimic coat proteins of linear viruses • Our model triblock protein co-polymer successfully encapsulates DNA • Allostery and directional assembly seem crucial ingredients • The kinetic zipper model describes the time evolution of the encapsulation of DNA • We predict over- & undershooting under conditions of excess DNA • Overshooting under conditions of excess of protein may occur in competition with micellisation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend