second order taylor
play

Second order Taylor Second order Taylor Method Taylor expansion of y - PowerPoint PPT Presentation

Second order Taylor Second order Taylor Method Taylor expansion of y ( t + h ) about y ( t ) yields y ( t ) + hy ( t ) + h 2 2 y ( t ) + h 3 3! y (3) ( c i ) y ( t + h ) = y ( t ) + hf ( t , y ( t )) + h 2 f t + f (


  1. Second order Taylor Second order Taylor Method Taylor expansion of y ( t + h ) about y ( t ) yields y ( t ) + hy ′ ( t ) + h 2 2 y ′′ ( t ) + h 3 3! y (3) ( c i ) y ( t + h ) = y ( t ) + hf ( t , y ( t )) + h 2 � ∂ f � ∂ t + ∂ f ( t , y ( t )) + O ( h 3 ) = ∂ y f 2 1 / 4

  2. Second order Taylor Second order Taylor Method Taylor expansion of y ( t + h ) about y ( t ) yields y ( t ) + hy ′ ( t ) + h 2 2 y ′′ ( t ) + h 3 3! y (3) ( c i ) y ( t + h ) = y ( t ) + hf ( t , y ( t )) + h 2 � ∂ f � ∂ t + ∂ f ( t , y ( t )) + O ( h 3 ) = ∂ y f 2 Then the second order Taylor method is: � ∂ f � y k +1 − y k = f ( t k , y k ) + h ∂ t + ∂ f ( t k , y k ) ∂ y f h 2 1 / 4

  3. Second order Runge-Kutta method Second order Runge-Kutta method Develop a second order method of the form: y k +1 − y k = a 1 f ( t , y ) + a 2 f ( t + α 2 , y + δ 2 f ( t , y )) h 2 / 4

  4. Second order Runge-Kutta method Second order Runge-Kutta method Develop a second order method of the form: y k +1 − y k = a 1 f ( t , y ) + a 2 f ( t + α 2 , y + δ 2 f ( t , y )) h We need to solve for a 1 , a 2 , α 2 and δ 2 2 / 4

  5. Second order Runge-Kutta method Second order Runge-Kutta method Develop a second order method of the form: y k +1 − y k = a 1 f ( t , y ) + a 2 f ( t + α 2 , y + δ 2 f ( t , y )) h We need to solve for a 1 , a 2 , α 2 and δ 2 To do that, we compare to second order Taylor: � ∂ f � y k +1 − y k = f ( t k , y k ) + h ∂ t + ∂ f ∂ y f ( t k , y k ) 2 h 2 / 4

  6. Second order Runge-Kutta method Second order Runge-Kutta method Develop a second order method of the form: y k +1 − y k = a 1 f ( t , y ) + a 2 f ( t + α 2 , y + δ 2 f ( t , y )) h We need to solve for a 1 , a 2 , α 2 and δ 2 To do that, we compare to second order Taylor: � ∂ f � y k +1 − y k = f ( t k , y k ) + h ∂ t + ∂ f ∂ y f ( t k , y k ) 2 h So we have to expand a 2 f ( t + α 2 , y + δ 2 f ( t , y )) 2 / 4

  7. Generalized Taylor (Calc 3 version) Theorem Let f ( t , y ) and all first and second order partial derivatives be continuous then � � ∆ t ∂ f ∂ t ( t , y ) + ∆ y ∂ f f ( t + ∆ t , y + ∆ y ) = f ( t , y ) + ∂ y ( t , y ) + R 3 / 4

  8. Generalized Taylor (Calc 3 version) Theorem Let f ( t , y ) and all first and second order partial derivatives be continuous then � � ∆ t ∂ f ∂ t ( t , y ) + ∆ y ∂ f f ( t + ∆ t , y + ∆ y ) = f ( t , y ) + ∂ y ( t , y ) + R therefore setting ∆ t = α 2 , ∆ y = δ 2 f ( t , y ) yeilds ∂ f ∂ t ( t , y ) + δ 2 f ( t , y ) ∂ f f ( t + α 2 , y + δ 2 f ( t , y )) = f ( t , y ) + α 2 ∂ y ( t , y ) + R 3 / 4

  9. Comparing apples to apples RK2 ∂ f ∂ t ( t , y ) + δ 2 f ( t , y ) ∂ f y k +1 − y k � � = a 1 f ( t , y ) + a 2 f ( t , y ) + α 2 ∂ y ( t , y ) + R h ∂ f ∂ t ( t , y ) + a 2 δ 2 f ( t , y ) ∂ f = ( a 1 + a 2 ) f ( t , y ) + a 2 α 2 ∂ y ( t , y ) + a 2 R Second order Taylor y k +1 − y k f ( t , y ) + h ∂ f ∂ t ( t , y ) + h 2 f ( t , y ) ∂ f = ∂ y ( t , y ) + R h 2 Therefore we need a 2 α 2 = h a 2 δ 2 = h a 1 + a 2 = 1 , 2 , 2 Which has infinitely many solutions of the form a 1 + a 2 = 1 and h α 2 = δ 2 = 2 a 2 4 / 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend