second kind boundary integral equations for
play

Second-Kind Boundary Integral Equations for Electromagnetic - PowerPoint PPT Presentation

Second-Kind Boundary Integral Equations for Electromagnetic Scattering at Composite Objects X. Claeys 2 , R. Hiptmair 1 , C. E. Spindler 1 1 Seminar for Applied Mathematics, ETH Zrich 2 UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis


  1. Electromagnetic Trace Spaces ✓ ✏ ( Ω ⊂ R 3 bounded Lipschitz domain, Γ := ∂ Ω ) γ E : H ( curl , Ω) → H − 1 2 ( curl Γ , Γ) := H E (Γ) continuous & surjective ✒ ✑ γ M : H ( curl 2 , Ω) → H − 1 2 ( div Γ , Γ) := H M (Γ) ✓ ✏ H E (Γ) := H − 1 2 ( curl Γ , Γ) ↔ H − 1 L 2 2 ( div Γ , Γ) := H M (Γ) t (Γ) -duality: � [ Pairing ( v , η ) �→ � v , η � Γ := Γ v ( y ) · η ( y ) d S ( y ) ] ✒ ✑ EM compound trace operator γ := ( γ E , γ M ) = ( γ t , curl · × n ) , γ : H ( curl 2 , Ω) → H (Γ) := H E (Γ) × H M (Γ) . EM compound trace space H (Γ) : self-dual w.r.t. pairing ➣ � �� u � � v �� � � u � � v � := � u , ν � Γ − � v , µ � Γ , ∈ T (Γ) . , , µ ν µ ν Γ R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 3 / 29

  2. Stratton-Chu Representation Formula R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  3. Stratton-Chu Representation Formula Representation formula: U ℓ ∈ H ( curl , Ω ℓ ) , − curl curl U ℓ − κ 2 ℓ U ℓ = 0 in Ω ℓ : R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  4. Stratton-Chu Representation Formula Representation formula: U ℓ ∈ H ( curl , Ω ℓ ) , − curl curl U ℓ − κ 2 ℓ U ℓ = 0 in Ω ℓ : � U ℓ in Ω ℓ , S ℓ [ κ ℓ ] ( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ] ( γ ℓ E U ℓ ) = in R 3 \ Ω ℓ . 0 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  5. Stratton-Chu Representation Formula Representation formula: U ℓ ∈ H ( curl , Ω ℓ ) , − curl curl U ℓ − κ 2 ℓ U ℓ = 0 in Ω ℓ : � U ℓ in Ω ℓ , S ℓ [ κ ℓ ] ( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ] ( γ ℓ E U ℓ ) = in R 3 \ Ω ℓ . 0 (Maxwell) single layer potential R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  6. Stratton-Chu Representation Formula Representation formula: U ℓ ∈ H ( curl , Ω ℓ ) , − curl curl U ℓ − κ 2 ℓ U ℓ = 0 in Ω ℓ : � U ℓ in Ω ℓ , S ℓ [ κ ℓ ] ( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ] ( γ ℓ E U ℓ ) = in R 3 \ Ω ℓ . 0 (Maxwell) single layer potential x �∈ Γ , S ℓ [ κ ]( ν ) ( x ) = V ℓ [ κ ]( ν )( x ) + ∇ x V ℓ [ κ ]( div Γ ν )( x ) , R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  7. Stratton-Chu Representation Formula Representation formula: U ℓ ∈ H ( curl , Ω ℓ ) , − curl curl U ℓ − κ 2 ℓ U ℓ = 0 in Ω ℓ : � U ℓ in Ω ℓ , S ℓ [ κ ℓ ] ( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ] ( γ ℓ E U ℓ ) = in R 3 \ Ω ℓ . 0 (Maxwell) single layer potential � V ℓ [ κ ]( ϕ )( x ) = Φ[ κ ]( x , y ) ϕ ( y ) d S ( y ) , Γ ℓ x �∈ Γ , S ℓ [ κ ]( ν ) ( x ) = V ℓ [ κ ]( ν )( x ) + ∇ x V ℓ [ κ ]( div Γ ν )( x ) , Φ[ κ ]( x , y ) = exp ( ı κ | x − y | ) , x � = y Helmholtz fundamental solution: 4 π | x − y | R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  8. Stratton-Chu Representation Formula Representation formula: U ℓ ∈ H ( curl , Ω ℓ ) , − curl curl U ℓ − κ 2 ℓ U ℓ = 0 in Ω ℓ : � U ℓ in Ω ℓ , S ℓ [ κ ℓ ] ( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ] ( γ ℓ E U ℓ ) = in R 3 \ Ω ℓ . 0 (Maxwell) single layer potential � V ℓ [ κ ]( ϕ )( x ) = Φ[ κ ]( x , y ) ϕ ( y ) d S ( y ) , Γ ℓ x �∈ Γ , S ℓ [ κ ]( ν ) ( x ) = V ℓ [ κ ]( ν )( x ) + ∇ x V ℓ [ κ ]( div Γ ν )( x ) , "smoothing": V : H − 1 2 ( ∂ Ω ℓ ) → H 1 loc ( R 3 ) Φ[ κ ]( x , y ) = exp ( ı κ | x − y | ) , x � = y Helmholtz fundamental solution: 4 π | x − y | R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  9. Stratton-Chu Representation Formula Representation formula: U ℓ ∈ H ( curl , Ω ℓ ) , − curl curl U ℓ − κ 2 ℓ U ℓ = 0 in Ω ℓ : � U ℓ in Ω ℓ , S ℓ [ κ ℓ ] ( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ] ( γ ℓ E U ℓ ) = in R 3 \ Ω ℓ . 0 (Maxwell) single layer potential (Maxwell) double layer potential � V ℓ [ κ ]( ϕ )( x ) = Φ[ κ ]( x , y ) ϕ ( y ) d S ( y ) , Γ ℓ x �∈ Γ , S ℓ [ κ ]( ν ) ( x ) = V ℓ [ κ ]( ν )( x ) + ∇ x V ℓ [ κ ]( div Γ ν )( x ) , D ℓ [ κ ]( v ) ( x ) = curl V ℓ ( v )( x ) . Φ[ κ ]( x , y ) = exp ( ı κ | x − y | ) , x � = y Helmholtz fundamental solution: 4 π | x − y | R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  10. Stratton-Chu Representation Formula Representation formula: U ℓ ∈ H ( curl , Ω ℓ ) , − curl curl U ℓ − κ 2 ℓ U ℓ = 0 in Ω ℓ : � U ℓ in Ω ℓ , G ℓ [ κ ℓ ]( γ ℓ U ℓ ) := S ℓ [ κ ℓ ] ( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ] ( γ ℓ E U ℓ ) = in R 3 \ Ω ℓ . 0 (Maxwell) single layer potential (Maxwell) double layer potential � V ℓ [ κ ]( ϕ )( x ) = Φ[ κ ]( x , y ) ϕ ( y ) d S ( y ) , Γ ℓ x �∈ Γ , S ℓ [ κ ]( ν ) ( x ) = V ℓ [ κ ]( ν )( x ) + ∇ x V ℓ [ κ ]( div Γ ν )( x ) , D ℓ [ κ ]( v ) ( x ) = curl V ℓ ( v )( x ) . Φ[ κ ]( x , y ) = exp ( ı κ | x − y | ) , x � = y Helmholtz fundamental solution: 4 π | x − y | R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 4 / 29

  11. (Subdomain) Boundary Integral Operators R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  12. (Subdomain) Boundary Integral Operators S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  13. (Subdomain) Boundary Integral Operators S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  14. (Subdomain) Boundary Integral Operators S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  15. (Subdomain) Boundary Integral Operators S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  16. (Subdomain) Boundary Integral Operators S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  17. (Subdomain) Boundary Integral Operators S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  18. (Subdomain) Boundary Integral Operators S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  19. (Subdomain) Boundary Integral Operators S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) EFIE Op. R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  20. (Subdomain) Boundary Integral Operators G ℓ [ κ ℓ ]( γ ℓ U ℓ ) := S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) MFIE Op. R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  21. (Subdomain) Boundary Integral Operators G ℓ [ κ ℓ ]( γ ℓ U ℓ ) := S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) � � 1 � γ ℓ G ℓ [ κ ℓ ]( γ ℓ U ℓ ) = ( γ ℓ U ℓ ) = γ ℓ U ℓ 2 Id + A ℓ [ κ ℓ ] “on Γ ” . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  22. (Subdomain) Boundary Integral Operators G ℓ [ κ ℓ ]( γ ℓ U ℓ ) := S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) � � 1 � γ ℓ G ℓ [ κ ℓ ]( γ ℓ U ℓ ) = ( γ ℓ U ℓ ) = γ ℓ U ℓ 2 Id + A ℓ [ κ ℓ ] “on Γ ” . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  23. (Subdomain) Boundary Integral Operators G ℓ [ κ ℓ ]( γ ℓ U ℓ ) := S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) � � 1 � γ ℓ G ℓ [ κ ℓ ]( γ ℓ U ℓ ) = ( γ ℓ U ℓ ) = γ ℓ U ℓ 2 Id + A ℓ [ κ ℓ ] “on Γ ” . ✤ ✜ � � u � 1 � � u � u = ∈ H (Γ ℓ ) 2 Id − C ℓ [ κ ℓ ] S ℓ [ κ ℓ ] ⇔ γ ℓ G ℓ [ κ ℓ ]( u ) = ϕ = u . S ′ 1 2 Id + C ′ ℓ [ κ ℓ ] ℓ [ κ ℓ ] ϕ are Cauchy data � �� � ✣ ✢ R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  24. (Subdomain) Boundary Integral Operators G ℓ [ κ ℓ ]( γ ℓ U ℓ ) := S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) � � 1 � γ ℓ G ℓ [ κ ℓ ]( γ ℓ U ℓ ) = ( γ ℓ U ℓ ) = γ ℓ U ℓ 2 Id + A ℓ [ κ ℓ ] “on Γ ” . ✤ ✜ � � u � 1 � � u � u = ∈ H (Γ ℓ ) 2 Id − C ℓ [ κ ℓ ] S ℓ [ κ ℓ ] ⇔ γ ℓ G ℓ [ κ ℓ ]( u ) = ϕ = u . S ′ 1 2 Id + C ′ ℓ [ κ ℓ ] ℓ [ κ ℓ ] ϕ are Cauchy data � �� � ✣ ✢ R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  25. (Subdomain) Boundary Integral Operators G ℓ [ κ ℓ ]( γ ℓ U ℓ ) := S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . Compound traces of U : curl curl U − κ 2 ℓ U = 0 in Ω ℓ � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) � � 1 � γ ℓ G ℓ [ κ ℓ ]( γ ℓ U ℓ ) = ( γ ℓ U ℓ ) = γ ℓ U ℓ 2 Id + A ℓ [ κ ℓ ] “on Γ ” . ✤ ✜ � � u � 1 � � u � u = ∈ H (Γ ℓ ) 2 Id − C ℓ [ κ ℓ ] S ℓ [ κ ℓ ] ⇔ γ ℓ G ℓ [ κ ℓ ]( u ) = ϕ = u . S ′ 2 Id + C ′ 1 ℓ [ κ ℓ ] ℓ [ κ ℓ ] ϕ are Cauchy data � �� � ✣ ✢ R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  26. (Subdomain) Boundary Integral Operators G ℓ [ κ ℓ ]( γ ℓ U ℓ ) := S ℓ [ κ ℓ ]( γ ℓ M U ℓ ) − D ℓ [ κ ℓ ]( γ ℓ R.F.: E U ℓ ) = U ℓ in Ω ℓ . E S ℓ [ κ ℓ ] ( γ ℓ γ ℓ − γ ℓ E D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) E U ℓ ) = E U ℓ , γ ℓ M S ℓ [ κ ℓ ] ( γ ℓ γ ℓ M D ℓ [ κ ℓ ] ( γ ℓ γ ℓ M U ℓ ) − E U ℓ ) = M U ℓ . � �� 1 � � � γ ℓ � ( γ ℓ S ℓ [ κ ℓ ] ( γ ℓ 2 Id − C ℓ [ κ ℓ ] E U ℓ ) + M U ℓ ) E U ℓ = � 1 � γ ℓ M U ℓ S ′ ℓ [ κ ℓ ] ( γ ℓ 2 Id + C ′ ( γ ℓ E U ℓ ) + ℓ [ κ ℓ ] M U ℓ ) � � 1 � γ ℓ G ℓ [ κ ℓ ]( γ ℓ U ℓ ) = ( γ ℓ U ℓ ) = γ ℓ U ℓ 2 Id + A ℓ [ κ ℓ ] “on Γ ” . ✤ ✜ � � u � 1 � � u � u = ∈ H (Γ ℓ ) 2 Id − C ℓ [ κ ℓ ] S ℓ [ κ ℓ ] ⇔ γ ℓ G ℓ [ κ ℓ ]( u ) = ϕ = u . S ′ 1 2 Id + C ′ ℓ [ κ ℓ ] ℓ [ κ ℓ ] ϕ are Cauchy data � �� � ✣ ✢ (interior) Calderón projector P ℓ = 1 2 Id + A ℓ [ κ ℓ ] R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 5 / 29

  27. What Next ? Scattering at Composite Objects 1 BIE: Single Subdomain Setting 2 BIE: Composite Scatterer 3 Numerical Experiments 4 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 6 / 29

  28. Single Subdomain Setting (SSS) R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 7 / 29

  29. Single Subdomain Setting (SSS) c Ω 0 = Ω U inc n = Homogeneous scatterer: n 0 Γ Ω 1 n n 0 n R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 7 / 29

  30. Single Subdomain Setting (SSS) c Ω 0 = Ω U inc n = Homogeneous scatterer: n 0 Γ Ω 1 n n 0 n � for x ∈ Ω 0 , κ 0 κ ( x ) = κ 1 for x ∈ Ω 1 , curl curl U − κ ( x ) 2 U = 0 Electromagnetic scattering: R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 7 / 29

  31. Single Subdomain Setting (SSS) c Ω 0 = Ω U inc n = Homogeneous scatterer: n 0 Γ Ω 1 n n 0 n � for x ∈ Ω 0 , κ 0 κ ( x ) = κ 1 for x ∈ Ω 1 , curl curl U − κ ( x ) 2 U = 0 Electromagnetic scattering: − ∆ U − κ ( x ) 2 U = 0 Acoustic scattering: R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 7 / 29

  32. SSS: Helmholtz Transmission Problem R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 8 / 29

  33. SSS: Helmholtz Transmission Problem If U solves Helmholtz scattering trans- mission problem c Ω 0 = Ω n u inc n 0 Γ Ω n 0 n n R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 8 / 29

  34. SSS: Helmholtz Transmission Problem If U solves Helmholtz scattering trans- mission problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω n 0 n n R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 8 / 29

  35. SSS: Helmholtz Transmission Problem If U solves Helmholtz scattering trans- mission problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 8 / 29

  36. SSS: Helmholtz Transmission Problem If U solves Helmholtz scattering trans- mission problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . compact operator ( L 2 (Γ)) 2 �→ ( L 2 (Γ)) 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 8 / 29

  37. SSS: Helmholtz Transmission Problem If U solves Helmholtz scattering trans- mission problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . compact operator ( L 2 (Γ)) 2 �→ ( L 2 (Γ)) 2 � − δ K 1 � δ V 1 A 1 [ κ 0 ] − A 1 [ κ 0 ] = [difference BI-Ops] δ K ′ δ W 1 1 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 8 / 29

  38. SSS: Helmholtz Transmission Problem If U solves Helmholtz scattering trans- mission problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . compact operator ( L 2 (Γ)) 2 �→ ( L 2 (Γ)) 2 � − δ K 1 � δ V 1 A 1 [ κ 0 ] − A 1 [ κ 0 ] = [difference BI-Ops] δ K ′ δ W 1 1 � exp ( ı κ 0 | x − y | ) − exp ( ı κ 1 | x − y | ) δ V 1 ( ϕ )( x ) = ϕ ( y ) d S ( y ) . 4 π | x − y | Γ � �� � C 0 -kernel R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 8 / 29

  39. SSS: Helmholtz Transmission Problem If U solves Helmholtz scattering trans- mission problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . compact operator ( L 2 (Γ)) 2 �→ ( L 2 (Γ)) 2 ➤ 2nd-kind BIE � − δ K 1 � δ V 1 A 1 [ κ 0 ] − A 1 [ κ 0 ] = [difference BI-Ops] δ K ′ δ W 1 1 � exp ( ı κ 0 | x − y | ) − exp ( ı κ 1 | x − y | ) δ V 1 ( ϕ )( x ) = ϕ ( y ) d S ( y ) . 4 π | x − y | Γ � �� � C 0 -kernel R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 8 / 29

  40. SSS: Maxwell Transmission Problem R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  41. SSS: Maxwell Transmission Problem Copy Helmholtz approach: If U solves Maxwell scattering problem c Ω 0 = Ω n u inc n 0 Γ Ω 1 n 0 n n R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  42. SSS: Maxwell Transmission Problem Copy Helmholtz approach: If U solves Maxwell scattering problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω 1 n 0 n n R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  43. SSS: Maxwell Transmission Problem Copy Helmholtz approach: If U solves Maxwell scattering problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω 1 n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  44. SSS: Maxwell Transmission Problem Copy Helmholtz approach: If U solves Maxwell scattering problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω 1 n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . t (Γ)) 2 ? t (Γ)) 2 �→ ( L 2 compact operator ( L 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  45. SSS: Maxwell Transmission Problem Copy Helmholtz approach: If U solves Maxwell scattering problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω 1 n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . t (Γ)) 2 ? t (Γ)) 2 �→ ( L 2 compact operator ( L 2 S 1 [ κ 1 ]( ϕ ) − S 1 [ κ 0 ]( ϕ ) = V 1 [ κ 0 ]( ϕ ) − V 1 [ κ 1 ]( ϕ )+ 1 0 ∇ Γ V 1 [ κ 0 ]( div Γ ϕ ) − 1 1 ∇ Γ V 1 [ κ 1 ]( div Γ ϕ ) . κ 2 κ 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  46. SSS: Maxwell Transmission Problem Copy Helmholtz approach: If U solves Maxwell scattering problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Cancellation of singularities Γ Ω 1 n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . t (Γ)) 2 ? t (Γ)) 2 �→ ( L 2 compact operator ( L 2 S 1 [ κ 1 ]( ϕ ) − S 1 [ κ 0 ]( ϕ ) = V 1 [ κ 0 ]( ϕ ) − V 1 [ κ 1 ]( ϕ )+ 1 0 ∇ Γ V 1 [ κ 0 ]( div Γ ϕ ) − 1 1 ∇ Γ V 1 [ κ 1 ]( div Γ ϕ ) . κ 2 κ 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  47. SSS: Maxwell Transmission Problem Copy Helmholtz approach: If U solves Maxwell scattering problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω 1 Remains hypersingular! n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . t (Γ)) 2 ? t (Γ)) 2 �→ ( L 2 compact operator ( L 2 S 1 [ κ 1 ]( ϕ ) − S 1 [ κ 0 ]( ϕ ) = V 1 [ κ 0 ]( ϕ ) − V 1 [ κ 1 ]( ϕ )+ 1 0 ∇ Γ V 1 [ κ 0 ]( div Γ ϕ ) − 1 1 ∇ Γ V 1 [ κ 1 ]( div Γ ϕ ) . κ 2 κ 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  48. SSS: Maxwell Transmission Problem Copy Helmholtz approach: If U solves Maxwell scattering problem c Ω 0 = Ω ( 1 2 Id + A 1 [ κ 1 ]) γ 1 U = 0 , n u inc ( 1 + 2 Id + A 0 [ κ 0 ]) γ 0 U = . . . . n 0 Γ Ω 1 n 0 n n ( Id + ( A 1 [ κ 0 ] − A 1 [ κ 1 ])) u = . . . . t (Γ)) 2 ? NO! t (Γ)) 2 �→ ( L 2 compact operator ( L 2 S 1 [ κ 1 ]( ϕ ) − S 1 [ κ 0 ]( ϕ ) = V 1 [ κ 0 ]( ϕ ) − V 1 [ κ 1 ]( ϕ )+ 1 0 ∇ Γ V 1 [ κ 0 ]( div Γ ϕ ) − 1 1 ∇ Γ V 1 [ κ 1 ]( div Γ ϕ ) . κ 2 κ 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 9 / 29

  49. Homogeneous Scatterer: Müller Formulation R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  50. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  51. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  52. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  53. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  54. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , E U ) + ( V 1 [ κ 0 ] + κ − 2 ( 1 2 Id − C 1 [ κ 0 ])( γ 1 0 ∇ Γ V 1 [ κ 0 ] div Γ )( γ 1 Ext ➂ : M U ) = . . . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  55. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , E U ) + ( V 1 [ κ 0 ] + κ − 2 ( 1 2 Id − C 1 [ κ 0 ])( γ 1 0 ∇ Γ V 1 [ κ 0 ] div Γ )( γ 1 Ext ➂ : M U ) = . . . ( κ 2 0 V 1 [ κ 0 ] − curl Γ V 1 [ κ 0 ] curl Γ )( γ 1 E U ) + ( 1 2 Id + C ′ 1 [ κ 0 ])( γ 1 Ext ➃ : M U ) = . . . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  56. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , E U ) + ( V 1 [ κ 0 ] + κ − 2 ( 1 2 Id − C 1 [ κ 0 ])( γ 1 0 ∇ Γ V 1 [ κ 0 ] div Γ )( γ 1 Ext ➂ : M U ) = . . . ( κ 2 0 V 1 [ κ 0 ] − curl Γ V 1 [ κ 0 ] curl Γ )( γ 1 E U ) + ( 1 2 Id + C ′ 1 [ κ 0 ])( γ 1 Ext ➃ : M U ) = . . . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  57. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , E U ) + ( V 1 [ κ 0 ] + κ − 2 ( 1 2 Id − C 1 [ κ 0 ])( γ 1 0 ∇ Γ V 1 [ κ 0 ] div Γ )( γ 1 Ext ➂ : M U ) = . . . ( κ 2 0 V 1 [ κ 0 ] − curl Γ V 1 [ κ 0 ] curl Γ )( γ 1 E U ) + ( 1 2 Id + C ′ 1 [ κ 0 ])( γ 1 Ext ➃ : M U ) = . . . κ 2 Idea: i -weighted sum of Calderón identities κ 2 1 · ➀ + κ 2 0 · ➂ , ➁ + ➃ . R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  58. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , E U ) + ( V 1 [ κ 0 ] + κ − 2 ( 1 2 Id − C 1 [ κ 0 ])( γ 1 0 ∇ Γ V 1 [ κ 0 ] div Γ )( γ 1 Ext ➂ : M U ) = . . . ( κ 2 0 V 1 [ κ 0 ] − curl Γ V 1 [ κ 0 ] curl Γ )( γ 1 E U ) + ( 1 2 Id + C ′ 1 [ κ 0 ])( γ 1 Ext ➃ : M U ) = . . . κ 2 Idea: i -weighted sum of Calderón identities κ 2 1 · ➀ + κ 2 0 · ➂ , ➁ + ➃ . � κ 2 �� � �� � γ 1 � κ 2 1 + κ 2 1 C 1 [ κ 1 ] − κ 2 − κ 2 1 V 1 [ κ 1 ] + κ 2 0 C 1 [ κ 0 ] 0 V 1 [ κ 0 ] E U Id 0 0 + = . . 2 1 C ′ 0 C ′ − κ 2 1 V 1 [ κ 1 ] + κ 2 − κ 2 1 [ κ 1 ] + κ 2 γ 1 0 V 1 [ κ 0 ] 1 [ κ 0 ] M U 0 Id R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  59. Homogeneous Scatterer: Müller Formulation Details: Maxwell Calderón identities (w.r.t Ω 1 ) E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , E U ) + ( V 1 [ κ 0 ] + κ − 2 ( 1 2 Id − C 1 [ κ 0 ])( γ 1 0 ∇ Γ V 1 [ κ 0 ] div Γ )( γ 1 Ext ➂ : M U ) = . . . ( κ 2 0 V 1 [ κ 0 ] − curl Γ V 1 [ κ 0 ] curl Γ )( γ 1 E U ) + ( 1 2 Id + C ′ 1 [ κ 0 ])( γ 1 Ext ➃ : M U ) = . . . κ 2 Idea: i -weighted sum of Calderón identities κ 2 1 · ➀ + κ 2 0 · ➂ , ➁ + ➃ . � κ 2 �� � �� � γ 1 � κ 2 1 + κ 2 1 C 1 [ κ 1 ] − κ 2 − κ 2 1 V 1 [ κ 1 ] + κ 2 0 C 1 [ κ 0 ] 0 V 1 [ κ 0 ] E U Id 0 0 + = . . 2 1 C ′ 0 C ′ − κ 2 1 V 1 [ κ 1 ] + κ 2 − κ 2 1 [ κ 1 ] + κ 2 γ 1 0 V 1 [ κ 0 ] 1 [ κ 0 ] M U 0 Id Cancellation of hypersingular operators! R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  60. Homogeneous Scatterer: Müller Formulation No cancellation in kernels! Details: Maxwell Calderón identities (w.r.t Ω 1 ) Fredholm, index = 0, in ( L 2 t (Γ)) 2 E U ) − ( V 1 [ κ 1 ] + κ − 2 ( 1 2 Id + C 1 [ κ 1 ])( γ 1 1 ∇ Γ V 1 [ κ 1 ] div Γ )( γ 1 Int ➀ : M U ) = 0 , D. M ITREA , M. M ITREA , AND J. P IPHER , Vector potential theory on nonsmooth domains in R 3 and applications to ( − κ 2 1 V 1 [ κ 1 ] + curl Γ V 1 [ κ 1 ] curl Γ )( γ 1 E U ) + ( 1 2 Id − C ′ 1 [ κ 1 ])( γ 1 Int ➁ : M U ) = 0 , electromagnetic scattering , J. Fourier Anal. Appl., 3 (1997), pp. 131–192. E U ) + ( V 1 [ κ 0 ] + κ − 2 ( 1 2 Id − C 1 [ κ 0 ])( γ 1 0 ∇ Γ V 1 [ κ 0 ] div Γ )( γ 1 Ext ➂ : M U ) = . . . ( κ 2 0 V 1 [ κ 0 ] − curl Γ V 1 [ κ 0 ] curl Γ )( γ 1 E U ) + ( 1 2 Id + C ′ 1 [ κ 0 ])( γ 1 Ext ➃ : M U ) = . . . κ 2 Idea: i -weighted sum of Calderón identities κ 2 1 · ➀ + κ 2 0 · ➂ , ➁ + ➃ . � κ 2 �� � �� � γ 1 � κ 2 1 + κ 2 1 C 1 [ κ 1 ] − κ 2 − κ 2 1 V 1 [ κ 1 ] + κ 2 0 C 1 [ κ 0 ] 0 V 1 [ κ 0 ] E U Id 0 0 + = . . 2 1 C ′ 0 C ′ − κ 2 1 V 1 [ κ 1 ] + κ 2 − κ 2 1 [ κ 1 ] + κ 2 γ 1 0 V 1 [ κ 0 ] 1 [ κ 0 ] M U 0 Id Cancellation of hypersingular operators! R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 10 / 29

  61. Composite Scattering Challenge R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 11 / 29

  62. Composite Scattering Challenge n 1 U inc c Ω 0 = Ω Γ n 0 n u inc Ω 1 n 3 n 0 n 1 n 1 n 0 Γ Ω 3 Ω 1 n n 3 n 2 n 0 Ω 2 n Ω 0 n 0 n 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 11 / 29

  63. Composite Scattering Challenge n 1 U inc c Ω 0 = Ω Γ n 0 n u inc Ω 1 n 3 n 0 n 1 n 1 n 0 Γ Ω 3 Ω 1 n n 3 n 2 n 0 Ω 2 n Ω 0 n 0 n 2 Calderón identities set in same space: A 0 [ κ 0 ] , A 1 [ κ 1 ] : H ( γ ) → H (Γ) R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 11 / 29

  64. Composite Scattering Challenge n 1 U inc c Ω 0 = Ω Γ n 0 n u inc Ω 1 n 3 n 0 n 1 n 1 n 0 Γ Ω 3 Ω 1 n n 3 n 2 n 0 Ω 2 n Ω 0 n 0 n 2 Calderón identities set in same Local Calderón identities in local trace spaces H (Γ k ) space: ? A 0 [ κ 0 ] , A 1 [ κ 1 ] : H ( γ ) → H (Γ) R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 11 / 29

  65. Müller Formulation: Multi-Potential Approach R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 12 / 29

  66. Müller Formulation: Multi-Potential Approach Multi-potential representation, U solves Maxwell TP: (1) U = − D 0 [ κ 0 ]( γ 0 E U ) + S 0 [ κ 0 ]( γ 0 M U ) (2) − D 1 [ κ 1 ]( γ 1 E U ) + S 1 [ κ 1 ]( γ 1 M U ) + . . . , R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 12 / 29

  67. Müller Formulation: Multi-Potential Approach Multi-potential representation, U solves Maxwell TP: ( κ 2 1 χ 1 + κ 2 0 χ 0 ) U = − κ 2 0 D 0 [ κ 0 ]( γ 0 E U ) + κ 2 0 S 0 [ κ 0 ]( γ 0 M U ) (1) − κ 2 1 D 1 [ κ 1 ]( γ 1 E U ) + κ 2 1 S 1 [ κ 1 ]( γ 1 M U ) + . . . , U = − D 0 [ κ 0 ]( γ 0 E U ) + S 0 [ κ 0 ]( γ 0 M U ) (2) − D 1 [ κ 1 ]( γ 1 E U ) + S 1 [ κ 1 ]( γ 1 M U ) + . . . , R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 12 / 29

  68. Müller Formulation: Multi-Potential Approach Multi-potential representation, U solves Maxwell TP: ( κ 2 1 χ 1 + κ 2 0 χ 0 ) U = − κ 2 0 D 0 [ κ 0 ]( γ 0 E U ) + κ 2 0 S 0 [ κ 0 ]( γ 0 M U ) (1) − κ 2 1 D 1 [ κ 1 ]( γ 1 E U ) + κ 2 1 S 1 [ κ 1 ]( γ 1 M U ) + . . . , U = − D 0 [ κ 0 ]( γ 0 E U ) + S 0 [ κ 0 ]( γ 0 M U ) (2) − D 1 [ κ 1 ]( γ 1 E U ) + S 1 [ κ 1 ]( γ 1 M U ) + . . . , Apply traces γ 1 E , γ 0 γ 1 M , γ 0 E to (1) & M on (2) [signs adjusted] R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 12 / 29

  69. Müller Formulation: Multi-Potential Approach Multi-potential representation, U solves Maxwell TP: ( κ 2 1 χ 1 + κ 2 0 χ 0 ) U = − κ 2 0 D 0 [ κ 0 ]( γ 0 E U ) + κ 2 0 S 0 [ κ 0 ]( γ 0 M U ) (1) − κ 2 1 D 1 [ κ 1 ]( γ 1 E U ) + κ 2 1 S 1 [ κ 1 ]( γ 1 M U ) + . . . , U = − D 0 [ κ 0 ]( γ 0 E U ) + S 0 [ κ 0 ]( γ 0 M U ) (2) − D 1 [ κ 1 ]( γ 1 E U ) + S 1 [ κ 1 ]( γ 1 M U ) + . . . , Apply traces γ 1 E , γ 0 γ 1 M , γ 0 E to (1) & M on (2) [signs adjusted] � 1 � � γ 1 � 2 ( κ 2 0 + κ 2 1 ) Id + κ 2 0 C 0 [ κ 0 ] + κ 2 − κ 2 0 S 0 [ κ 0 ] + κ 2 E U 1 C 1 [ κ 1 ] 1 S 1 [ κ 1 ] = . . . S ′ 0 [ κ 0 ] − S ′ Id − C ′ 0 [ κ 0 ] − C ′ γ 1 1 [ κ 1 ] 1 [ κ 1 ] M U R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 12 / 29

  70. Müller Formulation: Multi-Potential Approach Multi-potential representation, U solves Maxwell TP: ( κ 2 1 χ 1 + κ 2 0 χ 0 ) U = − κ 2 0 D 0 [ κ 0 ]( γ 0 E U ) + κ 2 0 S 0 [ κ 0 ]( γ 0 M U ) (1) − κ 2 1 D 1 [ κ 1 ]( γ 1 E U ) + κ 2 1 S 1 [ κ 1 ]( γ 1 M U ) + . . . , U = − D 0 [ κ 0 ]( γ 0 E U ) + S 0 [ κ 0 ]( γ 0 M U ) (2) − D 1 [ κ 1 ]( γ 1 E U ) + S 1 [ κ 1 ]( γ 1 M U ) + . . . , Apply traces γ 1 E , γ 0 γ 1 M , γ 0 E to (1) & M on (2) [signs adjusted] � 1 � � γ 1 � 2 ( κ 2 0 + κ 2 1 ) Id + κ 2 0 C 0 [ κ 0 ] + κ 2 − κ 2 0 S 0 [ κ 0 ] + κ 2 E U 1 C 1 [ κ 1 ] 1 S 1 [ κ 1 ] = . . . S ′ 0 [ κ 0 ] − S ′ Id − C ′ 0 [ κ 0 ] − C ′ γ 1 1 [ κ 1 ] 1 [ κ 1 ] M U � κ 2 �� � �� � γ 1 κ 2 1 + κ 2 1 C 1 [ κ 1 ] − κ 2 − κ 2 1 V 1 [ κ 1 ] + κ 2 � 0 C 1 [ κ 0 ] 0 V 1 [ κ 0 ] E U 0 Id 0 + = . . . 2 − κ 2 1 V 1 [ κ 1 ] + κ 2 − κ 2 1 [ κ 1 ] + κ 2 γ 1 0 V 1 [ κ 0 ] 1 C ′ 0 C ′ 1 [ κ 0 ] M U 0 Id R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 12 / 29

  71. What Next ? Scattering at Composite Objects 1 BIE: Single Subdomain Setting 2 BIE: Composite Scatterer 3 Numerical Experiments 4 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 13 / 29

  72. Composite EM Scattering n 1 U inc n 0 Γ Ω 1 n 3 n 1 n 0 n 1 Ω 3 n 3 n 2 Ω 2 Ω 0 n 0 n 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 14 / 29

  73. Composite EM Scattering curl curl U − κ ( x ) 2 U = 0 , n 1 U inc κ ( x ) = κ i > 0 in Ω i . n 0 Γ Ω 1 n 3 n 1 n 0 n 1 Ω 3 n 3 n 2 Ω 2 Ω 0 n 0 n 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 14 / 29

  74. Composite EM Scattering curl curl U − κ ( x ) 2 U = 0 , n 1 U inc κ ( x ) = κ i > 0 in Ω i . n 0 Γ Ω 1 n 3 Boundaries Γ k := ∂ Ω k n 1 n 0 n 1 Ω 3 Interfaces Γ k ℓ = ∂ Ω k ∩ ∂ Ω ℓ n 3 n 2 Skeleton: Ω 2 � � Ω 0 n 0 Σ := ∂ Ω k = Γ k ℓ . n 2 k k � = ℓ R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 14 / 29

  75. Skeleton Trace Spaces R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 15 / 29

  76. Skeleton Trace Spaces U inc n 1 n 0 Γ Ω 1 n 3 n 1 n 0 n 1 Ω 3 n 3 n 2 Ω 2 Ω 0 n 0 n 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 15 / 29

  77. Skeleton Trace Spaces Multi-trace space (electric/magnetic): U inc n 1 n 0 Γ MT (Σ) := H (Γ 0 ) × · · · × H (Γ N ) ∼ = MT E (Σ) × MT M (Σ) . Ω 1 n 3 n 1 n 0 n 1 Ω 3 n 3 n 2 Ω 2 Ω 0 n 0 n 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 15 / 29

  78. Skeleton Trace Spaces Multi-trace space (electric/magnetic): U inc n 1 n 0 Γ H (Γ 0 ) × · · · × H (Γ N ) ∼ MT (Σ) := = MT E (Σ) × MT M (Σ) . Ω 1 n 3 n 1 n 0 n 1 Ω 3 n 3 n 2 Ω 2 Ω 0 n 0 H (Γ l ) = H E (Γ ℓ ) × H M (Γ ℓ ) n 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 15 / 29

  79. Skeleton Trace Spaces Multi-trace space (electric/magnetic): U inc n 1 n 0 Γ MT (Σ) := H (Γ 0 ) × · · · × H (Γ N ) ∼ = MT E (Σ) × MT M (Σ) . Ω 1 n 3 n 1 n 0 n 1 Ω 3 γ Σ : � n 3 n 2 ℓ H loc ( curl 2 , Ω ℓ ) → MT (Σ) , Ω 2 Multi-trace operator: γ Σ := γ 0 × · · · × γ N ∼ Ω 0 = γ Σ E × γ Σ n 0 M n 2 R. Hiptmair (SAM, ETH Zürich) 2nd-kind BIE for EM Scattering RICAM, Oct 19, 2016 15 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend