high order quadratures for boundary integral equations a
play

High-order quadratures for boundary integral equations: a tutorial - PowerPoint PPT Presentation

High-order quadratures for boundary integral equations: a tutorial CBMS conference on fast direct solvers 6/23/14 Alex Barnett (Dartmouth College) Slides accompanying a partly chalk talk. Certain details, references, codes, exercises: download


  1. High-order quadratures for boundary integral equations: a tutorial CBMS conference on fast direct solvers 6/23/14 Alex Barnett (Dartmouth College) Slides accompanying a partly chalk talk. Certain details, references, codes, exercises: download quadrtut.zip

  2. Representing PDE solns: potential theory ‘charge’ (source of waves) distributed along curve Γ w/ density func. Φ Φ (x,y) ω (x,y) ρ ω Single-, double-layer potentials, x ∈ R 2 ρ n y n y � v ( x ) = Γ Φ( x , y ) σ ( y ) ds y := ( S σ )( x ) y y ∂ Φ � u ( x ) = ∂n y ( x , y ) σ ( y ) ds y := ( D σ )( x ) Γ 4 H (1) Γ Γ Φ( x , y ) := Φ( x − y ) = i 0 ( ω | x − y | ) kernel is Helmholtz fundamental soln a.k.a. free space Greens func DLP SLP

  3. Representing PDE solns: potential theory ‘charge’ (source of waves) distributed along curve Γ w/ density func. Φ Φ (x,y) ω (x,y) ρ ω Single-, double-layer potentials, x ∈ R 2 ρ n y n y � v ( x ) = Γ Φ( x , y ) σ ( y ) ds y := ( S σ )( x ) y y ∂ Φ � u ( x ) = ∂n y ( x , y ) σ ( y ) ds y := ( D σ )( x ) Γ 4 H (1) Γ Γ Φ( x , y ) := Φ( x − y ) = i 0 ( ω | x − y | ) kernel is Helmholtz fundamental soln a.k.a. free space Greens func DLP SLP Jump relations: limit as x → Γ can depend on which side ( ± ): v ± = Sσ S, D : bdry integral ops w/ above kernels, no jump u ± = Dσ ± 1 2 σ smoothing, bounded L 2 (Γ) → H 1 (Γ) jump

  4. Representing PDE solns: potential theory ‘charge’ (source of waves) distributed along curve Γ w/ density func. Φ Φ (x,y) ω (x,y) ρ ω Single-, double-layer potentials, x ∈ R 2 ρ n y n y � v ( x ) = Γ Φ( x , y ) σ ( y ) ds y := ( S σ )( x ) y y ∂ Φ � u ( x ) = ∂n y ( x , y ) σ ( y ) ds y := ( D σ )( x ) Γ 4 H (1) Γ Γ Φ( x , y ) := Φ( x − y ) = i 0 ( ω | x − y | ) kernel is Helmholtz fundamental soln a.k.a. free space Greens func DLP SLP Jump relations: limit as x → Γ can depend on which side ( ± ): v ± = Sσ S, D : bdry integral ops w/ above kernels, no jump u ± = Dσ ± 1 2 σ smoothing, bounded L 2 (Γ) → H 1 (Γ) jump • From now fix Γ = ∂ Ω i.e. densities live on obstacle boundary

  5. Underlying quadrature schemes in 2D periodic composite trapezoid Gaussian panels rule err O ( N − 2 p ) if f, ∂ Ω ∈ C 2 p err O ( e − αN ) if analytic f , ∂ Ω adaptivity, corner refinement vesicles, smooth bodies

  6. Classification of log singular schemes in 2D 4 sin 2 s − t kernel: � � K ( s, t ) = K 1 ( s, t ) log + K 2 ( s, t ) 2 split into K 1 , K 2 explicit split into K 1 , K 2 unknown global Kress ’91: prod. quadr. Kapur–Rokhlin ’97: corr. weights (PTR) Alpert ’99: aux. nodes but not FMM QBX ’12: local exp. for PDE panel-based Helsing ’08: Gen. Gauss. Kolm–Rokhlin: (Gauss–L) C contour integr. sets of aux. nodes QBX ’12 : local exp. for PDE • explicit split: more analytic info ⇒ gains efficiency • unknown split: useful for new kernels (eg axisymmetric)

  7. Potential evaluation close to boundary 2D interior Laplace ( k = 0 ) ∂ Ω param by Z ( s ) , s ∈ [0 , 2 π ) σ ( y ) v ( z ) = i � say want eval. u = D σ u = Re v , z − ydy 2 π ∂ Ω

  8. Potential evaluation close to boundary 2D interior Laplace ( k = 0 ) ∂ Ω param by Z ( s ) , s ∈ [0 , 2 π ) σ ( y ) v ( z ) = i � say want eval. u = D σ u = Re v , z − ydy 2 π ∂ Ω “ 5 h -rule”: target z must be 5 h from ∂ Ω to be accurate Eg use PTR. u convergence at z: log evaluation error in due to quadrature with N nodes: 10 0 0 −5 10 −5 −5 error at z −10 10 −10 −10 z z −15 −15 −15 10 N = 60 N = 120 100 200 300 N • exponential convergence, but rate arbitrarily slow as z → ∂ Ω Thm (B ’12) : rate = dist. of Z − 1 ( z ) from real axis in complex s plane

  9. Quadrature By eXpansion (QBX) (B ’11) (Klöckner-B-Greengard-O’Neil ’12) σ , v | ∂ Ω analytic ⇒ v extends analytically some dist. outside Ω

  10. Quadrature By eXpansion (QBX) (B ’11) (Klöckner-B-Greengard-O’Neil ’12) σ , v | ∂ Ω analytic ⇒ v extends analytically some dist. outside Ω v ( z ) = � ∞ n =0 c n ( z − z 0 ) Taylor exp. rad. of conv. ρ takes you beyond ∂ Ω u 0 log err in 10 −2 −4 Ω −6 z 0 −8 −10 −12 −14 −16 4 2 0 −2 c (n=8) integrand for n −4 −6 1 2 3 4 5 6 s

  11. Quadrature By eXpansion (QBX) (B ’11) (Klöckner-B-Greengard-O’Neil ’12) σ , v | ∂ Ω analytic ⇒ v extends analytically some dist. outside Ω v ( z ) = � ∞ n =0 c n ( z − z 0 ) Taylor exp. rad. of conv. ρ takes you beyond ∂ Ω • pick center z 0 about 2 . 5 h from ∂ Ω u 0 log err in 10 −2 • eval. P ( ≈ 10 ) terms via Cauchy, −4 Ω −6 c n = v ( n ) ( z 0 ) = i � σ ( y ) z 0 ( z − y ) n +1 dy −8 n ! 2 π −10 ∂ Ω −12 integrand more osc. ⇒ need βN nodes, β ≈ 4 −14 interpolate σ from original N −16 4 2 • eval. Taylor exp. in | z − z 0 | ≤ R < ρ 0 −2 c (n=8) integrand for n −4 −6 • repeat for z 0 ’s all around ∂ Ω 1 2 3 4 5 6 s

  12. Quadrature By eXpansion (QBX) (B ’11) (Klöckner-B-Greengard-O’Neil ’12) σ , v | ∂ Ω analytic ⇒ v extends analytically some dist. outside Ω v ( z ) = � ∞ n =0 c n ( z − z 0 ) Taylor exp. rad. of conv. ρ takes you beyond ∂ Ω • pick center z 0 about 2 . 5 h from ∂ Ω u 0 log err in 10 −2 • eval. P ( ≈ 10 ) terms via Cauchy, −4 Ω −6 c n = v ( n ) ( z 0 ) = i � σ ( y ) z 0 ( z − y ) n +1 dy −8 n ! 2 π −10 ∂ Ω −12 integrand more osc. ⇒ need βN nodes, β ≈ 4 −14 interpolate σ from original N −16 4 2 • eval. Taylor exp. in | z − z 0 | ≤ R < ρ 0 −2 c (n=8) integrand for n −4 −6 • repeat for z 0 ’s all around ∂ Ω 1 2 3 4 5 6 s � P + Cp � R � Cβ � P e − Cβ asymp. exponential conv. in P , β Thm. (B ’12) err ≤ C ρ P

  13. Quadrature By eXpansion (QBX) (B ’11) (Klöckner-B-Greengard-O’Neil ’12) σ , v | ∂ Ω analytic ⇒ v extends analytically some dist. outside Ω v ( z ) = � ∞ n =0 c n ( z − z 0 ) Taylor exp. rad. of conv. ρ takes you beyond ∂ Ω • pick center z 0 about 2 . 5 h from ∂ Ω u 0 log err in 10 −2 • eval. P ( ≈ 10 ) terms via Cauchy, −4 Ω −6 c n = v ( n ) ( z 0 ) = i � σ ( y ) z 0 ( z − y ) n +1 dy −8 n ! 2 π −10 ∂ Ω −12 integrand more osc. ⇒ need βN nodes, β ≈ 4 −14 interpolate σ from original N −16 4 2 • eval. Taylor exp. in | z − z 0 | ≤ R < ρ 0 −2 c (n=8) integrand for n −4 −6 • repeat for z 0 ’s all around ∂ Ω 1 2 3 4 5 6 s | n | <P c n J n ( kr ) e inθ • Taylor → local expansion � Helmholtz ( k> 0 ): • Cauchy → Graf’s addition theorem for Bessels

  14. QBX, 2D, high- k close eval. for Helmholtz 100 λ diameter 700 λ perimeter underlying Kress, N =9000 unknowns fill + solve 90 sec QBX eval in 30 sec ( 2 × 10 5 pts) rel. error < 10 − 11 (B ’12)

  15. Local vs global QBX; same scheme in 3D Local: use QBX to fill self and near panel matrix blocks, sparse O ( N ) – far via plain rule; err O ( h p + ǫ ) where ǫ fixed, controlled by p, P, β . ie not formally convergent; needs P high to push to ǫ = O ( ǫ mach ) Global: use QBX with all of ∂ Ω contrib to expansion at each center – kills the ǫ , allows lower P (for engs. apps.), do all via FMM (FDS?)

  16. Local vs global QBX; same scheme in 3D Local: use QBX to fill self and near panel matrix blocks, sparse O ( N ) – far via plain rule; err O ( h p + ǫ ) where ǫ fixed, controlled by p, P, β . ie not formally convergent; needs P high to push to ǫ = O ( ǫ mach ) Global: use QBX with all of ∂ Ω contrib to expansion at each center – kills the ǫ , allows lower P (for engs. apps.), do all via FMM (FDS?) fine source mesh for QBX centers for this panel self and neighboring panels 3D: panels p × p Gauss nodes panel of targets (p p, eg p=8) u ( r, θ, φ ) = Local expansion n � � c nm j n ( kr ) Y m n ( θ, φ ) m = − n | n |≤ P spherical harmonic addn thm • ( P +1) th order proven for σ ∈ W P +3+ ǫ, 2 (Epstein–Greengard–Klöckner ’12)

  17. QBX: 3D high-freq. torus scattering result Dirichlet BC (sound-soft acous- tics) 30 λ diameter N ≈ 145000 q =8 , p =10 , β =4 . 5 QBX quad 1.2 hr GMRES+FMM 1 hr laptop (4-core i7) relative error 10 − 5 • QBX in 3D still in primitive state (Barnett–Gimbutas–Greengard, in prep.) • note FEM/FDTD at this high accuracy & freq. essentially prohibitive

  18. QBX: 3D periodic scattering (prelim) Doubly-periodic grating of sound-soft scatterers Dirichlet obstacles d = 2 . 4 λ N = 25200 (one obstacle) p = 6 . QBX 4 min, laptop p =6 , P =8 , β =4 30 its 5 min error 10 − 5 • New periodizing scheme (Barnett–Gimbutas–Greengard, in prep.)

  19. 3D, Bremer–Gimbutas ’12: triangle auxiliary nodes Lots of precomputed nodes for various aspect triangles, kernels: local correction (self & neighbors) product grids in two parameters polar coords removes 1 /r singularity Low-frequency Helmholtz Neumann BVP:

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend