second gradient theory
play

Second gradient theory P . Seppecher (IMATH Toulon) Sperlonga , - PowerPoint PPT Presentation

Second gradient theory P . Seppecher (IMATH Toulon) Sperlonga , September 2010 P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 1 / 41 Duality in mechanics 1 Second gradient theory 2 A Cauchy-like


  1. Second gradient theory P . Seppecher (IMATH Toulon) Sperlonga , September 2010 P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 1 / 41

  2. Duality in mechanics 1 Second gradient theory 2 A Cauchy-like construction of the theory 3 Second gradient material 4 5 A mechanical error to avoid First example : capillary fluid 6 Second example : the beam in flexion 7 Third example : homogenized network of beams 8 Fourth example : pantographic beam 9 10 Closure of elasticity functionals 11 Conclusion P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 1 / 41

  3. Duality in mechanics (point masses) Dynamics of a point mass is driven by The balance of forces: the external mechanical actions on the mass can be described by a vector F suc that m γ = F or by the principle of virtual powers: the external mechanical actions on the mass can be described by a linear form P such that V ∈ R 3 , m γ · � ∀ � V = P ( � V ) - As well known any linear form on R 3 can be identify to a scalar product : P ( � V ) has the form P ( � V ) = F · � V and the two principles are equivalent. - Generalization to finite number of particles is straightforward. P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 2 / 41

  4. Duality in mechanics (rigid solids) The displacement of a rigid solid is an isometry. The only possible velocity fields � V have to satisfy the equiprojectivity property ∀ ( x , y ) ∈ ( R 3 ) 2 , ( � V ( x ) − � V ( y )) · ( x − y ) = 0 This makes a dimension 6 vector space. Indeed (Ω , W ) �→ ( V : x �→ W +Ω · x ) is an isomorphism with the set SKEW × R 3 . Its dual has a similar structure P ( � V ) = M · Ω+ R · W ( M , R ) is a torque-resultant representation of mechanical actions Generalization to finite number of rigid solids is straightforward. Let us show that the concept of forces is here both unsufficient and superfluous: P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 3 / 41

  5. Superfluous Two opposite forces have no physical meaning inside the theory no power is expanded in any possible motion is 0 in the dual of the space of rigid motions P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 4 / 41

  6. Unsufficient A wheel on sand P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 5 / 41

  7. Unsufficient A wheel on sand in rigid mechanics The applied torque at the contact point is not a force. It corresponds to some expanded power It is a non trivial element of the dual of rigid motions P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 5 / 41

  8. Duality Conclusion The PVP is equivalent to the momentum balance in simple situations It is more precise for systems with “sophisticated” kinematics In continuum mechanics : velocity fields belong to a space of smooth functions. Elements of the dual are distributions . P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 6 / 41

  9. Second gradient theory There are two way for constructing the theory: postulating a form for the internal virtual power and deducing boundary 1 actions postulating a form for boundary interactions and stating a representation 2 theorem for internal stresses Let us start by the first (and easier) method. P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 7 / 41

  10. Second gradient theory We assume the following form for internal virtual power b ij ∂ j V i + ∑ Z D ∑ a i V i + ∑ P int ( V ) = − c ijk ∂ j ∂ k V i � i i , j i , j , k P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 8 / 41

  11. Second gradient theory We assume the following form for internal virtual power b ij ∂ j V i + ∑ Z D ∑ a i V i + ∑ P int ( V ) = − c ijk ∂ j ∂ k V i � i i , j i , j , k b ij ∂ j V i + ∑ Z D ∑ P int ( V ) = − � c ijk ∂ j ∂ k V i i , j i , j , k P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 8 / 41

  12. Second gradient theory We assume the following form for internal virtual power b ij ∂ j V i + ∑ Z D ∑ a i V i + ∑ P int ( V ) = − c ijk ∂ j ∂ k V i � i i , j i , j , k b ij ∂ j V i + ∑ Z D ∑ P int ( V ) = − � c ijk ∂ j ∂ k V i i , j i , j , k Z P int ( V ) = − b ij ∂ j V i + c ijk ∂ j ∂ k V i � D P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 8 / 41

  13. Second gradient theory We assume the following form for internal virtual power b ij ∂ j V i + ∑ Z D ∑ a i V i + ∑ P int ( V ) = − c ijk ∂ j ∂ k V i � i i , j i , j , k b ij ∂ j V i + ∑ Z D ∑ P int ( V ) = − � c ijk ∂ j ∂ k V i i , j i , j , k Z P int ( V ) = − b ij ∂ j V i + c ijk ∂ j ∂ k V i � D Z P int ( V ) = − � b ij V i , j + c ijk V i , jk D P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 8 / 41

  14. Second gradient theory We assume the following form for internal virtual power b ij ∂ j V i + ∑ Z D ∑ a i V i + ∑ P int ( V ) = − c ijk ∂ j ∂ k V i � i i , j i , j , k b ij ∂ j V i + ∑ Z D ∑ P int ( V ) = − � c ijk ∂ j ∂ k V i i , j i , j , k Z P int ( V ) = − b ij ∂ j V i + c ijk ∂ j ∂ k V i � D Z P int ( V ) = − � b ij V i , j + c ijk V i , jk D and apply the principle of virtual power Z P int ( V )+ � P ext ( V ) D ργ i V i = � ∀ V , to explicit external actions P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 8 / 41

  15. Second gradient theory Let us integrate by parts the last term in Z Z Z P ext ( V ) = P int ( V ) = � D ργ i V i − � D ργ i V i + b ij V i , j + c ijk V i , jk D P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 9 / 41

  16. Second gradient theory Let us integrate by parts the last term in Z Z Z P ext ( V ) = P int ( V ) = � D ργ i V i − � D ργ i V i + b ij V i , j + c ijk V i , jk D Z D ρ ∑ Z Z P ext ( V ) = γ i V i + � b ij V i , j − c ijk , k V i , j + c ijk n k V i , j ∂ D D i P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 9 / 41

  17. Second gradient theory Let us integrate by parts the last term in Z Z Z P ext ( V ) = P int ( V ) = � D ργ i V i − � D ργ i V i + b ij V i , j + c ijk V i , jk D Z D ρ ∑ Z Z P ext ( V ) = γ i V i + � b ij V i , j − c ijk , k V i , j + c ijk n k V i , j ∂ D D i Setting σ ij = b ij − c ijk , k , P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 9 / 41

  18. Second gradient theory Let us integrate by parts the last term in Z Z Z P ext ( V ) = P int ( V ) = � D ργ i V i − � D ργ i V i + b ij V i , j + c ijk V i , jk D Z D ρ ∑ Z Z P ext ( V ) = γ i V i + � b ij V i , j − c ijk , k V i , j + c ijk n k V i , j ∂ D D i Setting σ ij = b ij − c ijk , k , Z Z Z P ext ( V ) = D ργ i V i + D σ ij V i , j + � c ijk n k V i , j ∂ D P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 9 / 41

  19. Second gradient theory Z Z Z P ext ( V ) = � D ργ i V i + D σ ij V i , j + c ijk n k V i , j ∂ D P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 10 / 41

  20. Second gradient theory Z Z Z P ext ( V ) = � D ργ i V i + D σ ij V i , j + c ijk n k V i , j ∂ D Let us integrate by parts again Z Z P ext ( V ) = D ( ργ i − σ ij , j ) V i + ∂ D σ ij n j V i + c ijk n k V i , j � P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 10 / 41

  21. Second gradient theory Z Z Z P ext ( V ) = � D ργ i V i + D σ ij V i , j + c ijk n k V i , j ∂ D Let us integrate by parts again Z Z P ext ( V ) = D ( ργ i − σ ij , j ) V i + ∂ D σ ij n j V i + c ijk n k V i , j � Setting f ext = ργ − div ( σ ) , we get Z Z P ext ( V ) = f ext � V i + ∂ D σ ij n j V i + c ijk n k V i , j i D P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 10 / 41

  22. Second gradient theory Z Z P ext ( V ) = f ext ∂ D σ ij n j V i + c ijk n k V i , j � V i + i D Now, let us integrate by parts the last term on the boundary. We need to separate normal and tangent derivatives: V i , j = V n i , j + V t where V n V t i , j = V i ,ℓ n ℓ n j , i , j = V i ,ℓ P ℓ j , P ℓ j = δ ℓ j − n ℓ n j i , j , P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 11 / 41

  23. Second gradient theory Z Z P ext ( V ) = f ext ∂ D σ ij n j V i + c ijk n k V i , j � V i + i D Now, let us integrate by parts the last term on the boundary. We need to separate normal and tangent derivatives: V i , j = V n i , j + V t where V n V t i , j = V i ,ℓ n ℓ n j , i , j = V i ,ℓ P ℓ j , P ℓ j = δ ℓ j − n ℓ n j i , j , Then Z Z Z Z c ijk n k V t c ijk n k ν j V i c ijk n k V i ,ℓ P ℓ q P qj = − ∂ D ( c ijk n k P qj ) ,ℓ P ℓ q V i + i , j = ∂ D ∂ D ∂∂ D P . Seppecher (IMATH Toulon) () Second gradient theory Sperlonga , September 2010 11 / 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend