search for neutrino emission from fast radio bursts with
play

Search for Neutrino Emission from Fast Radio Bursts with IceCube - PowerPoint PPT Presentation

Search for Neutrino Emission from Fast Radio Bursts with IceCube Donglian Xu Samuel Fahey, Justin Vandenbroucke and Ali Kheirandish for the IceCube Collaboration International Cosmic Ray Conference (ICRC) 2017 July 14 th , 2017 | Busan, South


  1. Search for Neutrino Emission from Fast Radio Bursts with IceCube Donglian Xu Samuel Fahey, Justin Vandenbroucke and Ali Kheirandish for the IceCube Collaboration International Cosmic Ray Conference (ICRC) 2017 July 14 th , 2017 | Busan, South Korea

  2. 2 Fast Radio Bursts - Discovery in 2007 e 2 2 π m e c 3 · DM · w − 2 Lorimer et al., Science 318 (5851): 777-780 ∆ t delay = = 1 . 5 × 10 − 24 s · DM · w − 2 Z n e dl = 375 ± 1cm − 3 pc DM = “very compact” SMC J0045 − 7042 (70) J0111 − 7131 (76) J0113 − 7220 (125) “extragalactic”? J0045 − 7319 (105) J0131 − 7310 (205) ω 1 . 4GHz) − 4 . 8 ± 0 . 4 δ t width = 4 . 6 ms ( Z dtI ω ' 150 ± 50Jy ms @ 1 . 4 GHz Galactic DM: • A total of 43 FRBs ( 18 unique locations) detected 25cm − 3 pc to date. Estimated FRB event rate is ~3,000/day Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  3. Fast Radio Bursts Emitting Neutrinos? 3 • Blitzar “Cataclysmic” [H. Falcke and L. Rezzolla, A&A 562, A137 (2014)] • Binary neutron star merger [T. Totani, Pub. Astron. Soc. Jpn. 65, L12 (2013)] • Evaporating primordial black holes [Halzen et al ., PRD 1995] “MeV neutrinos” • Magnetar/SGRs hyperflares [S. B. Popov and K. A. Postnov, arXiv:1307.4924] [Halzen et al. (2005) astro-ph/0503348] “TeV neutrinos”? this work No concrete neutrino production models yet Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  4. Goal: detecting TeV-PeV astrophysical neutrinos Construction completed in December 2010 IceCube Detector 4 Donglian Xu | High-E Neutrinos from Fast Radio Bursts | Jan. 29, 2017

  5. Neutrino Signatures in IceCube 5 (1) Track: charged current ν μ • <1 o Angular resolution • Factor ~ 2 energy resolution 2013 data (2) Cascade / Shower: all neutral current, charged current ν e , low-E charged current ν τ • 10 o Angular resolution above100 TeV data • 15% energy resolution on “high degeneracy” deposited energy IceCube has detected a diffuse astrophysical neutrino flux, but no TeV neutrino point sources have been identified to date. Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  6. All Sky Fast Radio Bursts with IceCube Coverage 6 • Burst times cover IceCube data taking seasons from 2010 to 2015 (6 years) • A total of 29 FRBs ( 11 unique locations). Repeated bursts are treated as unique bursts in space & time FRB121102 repeated 26 times (17 times within our data sample) North South Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  7. Event Samples & Background Modeling 7 Background PDF derived from North South off-time data (DEC >= -5 o ) (DEC < -5 o ) 842,597 events 379,261 events (collected from (collected from 2011-2015) 2010-2014) “dominated by “dominated by atmospheric atmospheric neutrinos” muons” A total of 1.2 million events in 6 years Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  8. Analysis Method: Unbinned Maximum Likelihood 8 The likelihood for observing N events with properties for { x i } ( n s + n b ) expected number of events is: N L ( N, { x i } ; n s + n b ) = ( n s + n b ) N Y · exp( − ( n s + n b )) · P ( x i ) N ! i =1 The normalized probability of observing event is : P ( x i ) i S i = S time ( t i ) · S space ( ~ x i ) P ( x i ) = n s S ( x i ) + n b B ( x i ) n s + n b B i = B time ( t i ) · B space ( ~ x i ) “temporal” + “spatial” T := ln L ( N, { x i } ; n s + n b ) L 0 ( N, { x i } ; n b ) N ˆ n s S i X T := − ˆ n s + ln(1 + ) < n b > B i i =1 Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  9. Search Strategy 9 • Stacking “Distributed fluence test” Source 1 Source 2 Source 3 declination STACKING r.a • Max-burst ‣ Model independent “Single bright neutrino source test” ‣ Expanding time windows centered at burst times Source 3 Source 1 Source 2 ‣ 25 time windows from 10 declination ms to 2 days, expanding as 2 i x 10 ms (i =0, …, 24) r.a Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  10. Sensitivity & Discovery Potentials - Stacking 10 North South E − 2 sensitivity E − 2 5 σ disc. poten. E − 2 sensitivity E − 2 5 σ disc. poten. E − 2 . 5 sensitivity E − 2 . 5 5 σ disc. poten. E − 2 . 5 sensitivity E − 2 . 5 5 σ disc. poten. E − 3 sensitivity E − 3 5 σ disc. poten. E − 3 sensitivity E − 3 5 σ disc. poten. IceCube Preliminary E 2 F @ 100 TeV (GeV cm − 2 ) E 2 F @ 100 TeV (GeV cm − 2 ) IceCube Preliminary 10 0 10 − 1 10 − 2 10 − 1 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 ∆ T (s) ∆ T (s) ‣ 25 time windows from 10 ms to 2 days, expanding as 2 i x 10 ms (i =0, …, 24) Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  11. Sensitivity & Discovery Potentials - Max-burst 11 North South E − 2 sensitivity E − 2 5 σ disc. poten. E − 2 sensitivity E − 2 5 σ disc. poten. E − 2 . 5 sensitivity E − 2 . 5 5 σ disc. poten. E − 2 . 5 sensitivity E − 2 . 5 5 σ disc. poten. E − 3 sensitivity E − 3 5 σ disc. poten. E − 3 sensitivity E − 3 5 σ disc. poten. IceCube Preliminary E 2 F @ 100 TeV (GeV cm − 2 ) E 2 F @ 100 TeV (GeV cm − 2 ) IceCube Preliminary 10 − 1 10 0 10 − 2 10 − 1 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 ∆ T (s) ∆ T (s) ‣ 25 time windows from 10 ms to 2 days, expanding as 2 i x 10 ms (i =0, …, 24) Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  12. Results - Most Significant Bursts & Events 12 North Max-burst South Max-burst Most optimal time window: Most optimal time window: ∆ T = 655 . 36 s ∆ T = 167772 . 16 s Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  13. Results - Upper Limits 13 North Stacking North Max-burst E − 2 sensitivity E − 2 upper limit E − 2 sensitivity E − 2 upper limit E − 2 . 5 sensitivity E − 2 . 5 upper limit E − 2 . 5 sensitivity E − 2 . 5 upper limit E − 3 sensitivity E − 3 upper limit E − 3 sensitivity E − 3 upper limit IceCube Preliminary IceCube Preliminary E 2 F @ 100 TeV (GeV cm − 2 ) ∆ T = 655 . 36 s E 2 F @ 100 TeV (GeV cm − 2 ) ∆ T = 655 . 36 s 10 − 1 10 − 1 10 − 2 10 − 2 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 ∆ T (s) ∆ T (s) Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  14. Results - Upper Limits 14 South Stacking South Max-burst E − 2 sensitivity E − 2 upper limit E − 2 sensitivity E − 2 upper limit E − 2 . 5 sensitivity E − 2 . 5 upper limit E − 2 . 5 sensitivity E − 2 . 5 upper limit E − 3 sensitivity E − 3 upper limit E − 3 sensitivity E − 3 upper limit IceCube Preliminary IceCube Preliminary E 2 F @ 100 TeV (GeV cm − 2 ) 10 0 E 2 F @ 100 TeV (GeV cm − 2 ) 10 − 1 10 − 1 10 − 2 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 ∆ T (s) ∆ T (s) Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  15. Conclusion & Outlook 15 • Fast radio bursts (FRBs) could emit high energy neutrinos • A maximum likelihood analysis has been established to search for spatial and temporal coincidence between IceCube neutrinos and FRBs • No significant correlations between IceCube neutrinos and FRBs were found in 6 years of data • IceCube can now quickly follow up on the FRBs to be detected in the forthcoming future, adding a multi- messenger window to help untangle the FRB mystery Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  16. Back up slides 16 Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  17. Sensitivity & Discovery Potentials 17 Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  18. Neutrino vs Photon Arrival Times 18 Assume the same escape time t 0 : ∆ t = D · | 1 c − 1 1 | = D · ( − 1) s q v ν 1 (1 − γ 2 ) γ = E ν , c = 1 m ν ∆ t ' 1 2 · D · ( m ν ) 2 E ν ∆ t ' 1 eV ) 2 · (MeV 2 · ( m ν D ) 2 · ( 10 kpc) E ν Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

  19. Neutrino vs Photon Arrival Times 19 For z ' 0 . 5 , D light ' 2 Gpc For 10 MeV neutrinos: ∆ t ' 1 2 · (1 eV eV ) 2 · ( MeV 10 MeV) 2 · ( 2 Gpc 10 kpc) ' 1000 s For 1 TeV neutrinos: ∆ t ' 1 2 · (1 eV eV ) 2 · ( MeV 1 TeV) 2 · ( 2 Gpc 10 kpc) ' 1 . 0 ⇥ 10 − 7 s Photon trapped time unknown Donglian Xu | High-E Neutrinos from Fast Radio Bursts | ICRC2017, Busan

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend