gamma ray bursts
play

Gamma-Ray Bursts: 3. Short GRBs Brian Metzger, Columbia University - PowerPoint PPT Presentation

Gamma-Ray Bursts: 3. Short GRBs Brian Metzger, Columbia University Binary Neutron Star Mergers Gravitational Waves Gravitational Waves G 3 M 2 " 1 dP dt = 48 NS NS NS NS a a c 5 a 4 P 5 10 Known Galactic NS-NS Binaries


  1. Gamma-Ray Bursts: 3. Short GRBs Brian Metzger, Columbia University

  2. Binary Neutron Star Mergers Gravitational Waves Gravitational Waves Ω Ω G 3 M 2 " 1 dP dt = 48 NS NS NS NS a a c 5 a 4 P 5 10 Known Galactic NS-NS Binaries 10 Known Galactic NS-NS Binaries Hulse-Taylor Pulsar (Lorimer 2008) merge ~ 10 -5 " 10 -4 yr -1 T merge = 300 = 300 Myr Myr T merge ˙ N (Kalogera ( Kalogera et al. 2004) et al. 2004)

  3. Gravitational Waves from Inspiral and Merger Credit: Kip Thorne Credit: Kip Thorne “chirp chirp” ” “ Ground-Based Virgo (Italy) Virgo (Italy) LIGO (North America) LIGO (North America) Interferometers LIGO 6th Science Run LIGO 6th Science Run (2010) Range ~ 20-50 Mpc Mpc (2010) Range ~ 20-50 “Advanced “ Advanced” ” LIGO+Virgo LIGO+Virgo (~2016) Range ~ 300-600 Mpc Mpc (~2016) Range ~ 300-600

  4. Numerical Simulation - Two 1.4 M  NSs Numerical Simulation - Two 1.4 M  Courtesy M. Shibata (Tokyo U)

  5. Numerical Simulation - Two 1.4 M  NSs Numerical Simulation - Two 1.4 M  Courtesy M. Shibata (Tokyo U)

  6. Re Remn mnant Ac Accretion Di Disk (e.g. Ruffert & Janka 1999; Shibata & Taniguchi 2006; Faber et al. 2006; Chawla et al. 2010; Duez et al. 2010; Foucalt 2012; Deaton et al. 2013) Lee et al. 2004 • Disk Mass ~0.01 - 0.1 M  & Size ~ 10-100 km • Hot (T > MeV) & Dense ( ρ ~ 10 8 -10 12 g cm -3 ) • Neutrino Cooled: ( τ ν ~ 0.01-100) e " + p # $ e + n e + + n " # • Equilibrium ⇒ Y e ~ 0.1 vs. . e + p vs M ~ 10 " 2 " 10 M ! s -1 ˙ Accretion Rate Accretion Rate Short GRB 1/ 2 ( 3/ 2 H / R ) 1 ) 2 " % " % " % " % M • R d Engine? t visc ~ 0.1 s $ ' $ ' $ ' $ ' 3 M ! # 0.1 & # 100 km & # 0.5 & # &

  7. Relativistic Jets and Short GRBs ν Powered Aloy et al. 2005 Rezzolla et al. 2010 MHD Powered Zhang & MacFadyen 2009

  8. Shor Short & & Long Gamma-Ray Bursts BATSE Bursts Nakar 07 Nakar 07

  9. Short & Shor & Long Gamma-Ray Bursts Long GRBs = Death of Massive Stars BATSE Bursts Star-Forming Host Galaxies (z avg ~2-3) Supernova Connection GRB 030329 ⇔ SN 2003dh Nakar 07 Nakar 07 Stanek et al. 2003

  10. Short & Shor & Long Gamma-Ray Bursts Long GRBs = Death of Massive Stars BATSE Bursts Star-Forming Host Galaxies (z avg ~2-3) Supernova Connection GRB 030329 ⇔ SN 2003dh Nakar 07 Nakar 07 Stanek et al. 2003 Short ??? ???

  11. Short GRB Host Galaxies GRB050724 Swift Swift Berger+05 z = 0.258 SFR < 0.03 M  yr -1 GRB050709 GRB050509b z = 0.16 SFR = 0.2 M  yr -1 Bloom+ 06 z = 0.225 HUBBLE Fox+05 KECK Bloom+06 SFR < 0.1 M  yr -1

  12. Short GRB Host Galaxies GRB050724 Swift Swift Berger+05 • Lower redshift (z ~ 0.1-1) • E iso ~ 10 49-51 ergs GRB050724 z = 0.258 • Older Progenitor SFR < 0.03 M  yr -1 Population (e.g. Fong+ 2010; Leibler & Berger 2010) GRB050709 GRB050509b z = 0.16 SFR = 0.2 M  yr -1 Bloom +06 Bloom+ 06 No Supernova z = 0.225 HUBBLE Fox+05 KECK Bloom+06 SFR < 0.1 M  yr -1

  13. Berger 2013

  14. Radial Offsets from Host Galaxy Faucher-Giguere & Berger 2013 Kaspi 2006 In place pulsar velocity (km s -1 ) NS receive kick velocity v k ~ 100 km s -1 > v esc " % " % v t D = 100 kpc $ ' $ ' ⇒ short GRBs may occur outside host galaxy 100 km s -1 # & Gyr # &

  15. Not that Short After All….  1/4 Swift Short Bursts have X-ray Tails GRB 050709  Rapid Variability ⇒ Ongoing Engine Activity  Energy up to ~30 times Burst Itself! Extended Emission Extended Emission GRB080503 S EE /S GRB ~ 30 Perley, BDM et al. 2009 BATSE Examples (Norris & Bonnell 2006)

  16. Why Two Timescales? Why the Delay? ? t accretion ~ 0.1-1 s ??? Lee et al. (2004) Lee et al. (2004)

  17. Viscous Evolution of the Viscous Evolution of the Remnant Disk Remnant Disk Local Disk Mass Σπ r 2 (M  ) Metzger, Piro & Quataert 2008, 2009 Angular Momentum Angular Momentum " t = 3 % ( " # " r r 1/ 2 " " ( ) " r $ # r 1/ 2 ' * r & ) 1/ 2 J = M d R d v K " M d R d BH $ 2 # R d " M d Entropy Entropy t = 0.01 s T dS dt = ˙ visc " ˙ q q # t = 1 s Heating Heating Cooling Cooling

  18. Late-Time Disk Outflows ( Late-Time Disk Outflows (‘Evaporation vaporation’) After t ~ After t ~ 1 seconds, R ~ 300 km & 1 seconds, R ~ 300 km & T < 1 T < 1 MeV MeV • Recombination: n + p ⇒ He E BIND ~ GM BH m n /2R ~ 5 5 MeV MeV nucleon nucleon -1 -1 E BIND ~ GM BH m n /2R ~ E NUC ~ 7 7 MeV MeV nucleon nucleon -1 -1 Δ E NUC ~ Δ • Thick Disks Marginally Bound

  19. Late-Time Disk Outflows ( Late-Time Disk Outflows (‘Evaporation vaporation’) After t ~ After t ~ 1 seconds, R ~ 300 km & 1 seconds, R ~ 300 km & T < 1 T < 1 MeV MeV • Recombination: n + p ⇒ He } E BIND ~ GM BH m n /2R ~ 5 5 MeV MeV nucleon nucleon -1 -1 E BIND ~ GM BH m n /2R ~ Disk Blows ⇒ E NUC ~ 7 7 MeV MeV nucleon nucleon -1 -1 Δ E NUC ~ Apart Δ • Thick Disks Marginally Bound BH Sizable Fraction of Initial Disk Unbound! Sizable Fraction of Initial Disk Unbound!

  20. Axisymmetric Torus Evolution (Fernandez & Metzger 2012, 2013) • P-W potential with M BH = 3,10 M  • hydrodynamic α viscosity Equilibrium Torus M t ~ 0.01-0.1 M  R 0 ~ 50 km • NSE recombination 2n +2p ⇒ 4 He uniform Y e = 0.1 • run-time Δ t ~ 1000-3000 t orb • neutrino self-irradiation: “light bulb” + optical depth corrections: R ∈ [2,2000] R g angular emission pattern N r = 64 per decade peak emission N θ = 56 radius

  21. Late Disk Outflows (Evaporation) ˙ M out (with " recombination) ˙ M ˙ M out (NO " recombination) BH • unbound outflow powered by viscous heating and α recombination • neutrino heating subdominant Time (s) outflow robust M ej ~ 0.05 M 0.05 M t t V ej ~ 0.1 c

  22. Why Two Timescales? Why the Delay? ? t accretion ~ 0.1-1 s ??? Lee et al. (2004) Lee et al. (2004)

  23. Stable Neutron Star Remnant? (e.g. Rasio 99; BDM+08; Ozel et al. 2010; Bucciantini et al. 2012; Zhang 13; Giacomazzo & Perna 13; Falcke & Rezzolla 13; Kiziltan 2013) • Requires: low total mass binary, stiff EOS*, and/or mass loss during merger *supported by recent discovery of 2M  NS by Demorest et al. 2011 • Rotating near centrifugal break-up with spin period P ~ 1 ms • Magnetic field amplified by rotational energy ⇒ “Magnetar” ? (e.g. Thompson & Duncan 92; Price & Rosswog 2006; Zrake & MacFadyen 2013) Giacomazzo & Perna 2013

  24. Magnetar Spin-Down Powered Extended Emission (BDM et al. 2008; Bucciantini, BDM et al. 2012) Theoretical Light Curves Magnetar wind confined by merger ejecta vs. observed X-ray tails (magnetar outflow model from Metzger et al. 2011) Merger P 0 = 1.5 ms, Jet B dip = 2 × 10 15 G Ejecta Bucciantini et al. 2011 Magnetar Wind Jet may continue to inject energy into forward shock or produce lower level prompt emission (Zhang & Meszaros 2001; Dall’Osso et al. 2011; Rowlinson et al. 2013; Gompertz et al. 2013)

  25. Radio constraints on long-lived NS merger remnants (BDM & Bower 2014) 1.4 GHz Luminosity (erg s -1 ) • Rotational energy eventually transferred to ISM ⇒ bright radio emission • Observed 7 short GRBs with VLA on timescales ~1-3 years after burst Rest-Frame Time Since GRB (years) • NO DETECTIONS ⇒ rules out stable NS remnant in 2 GRBs with Radio survey known high ISM densities constraints Frail et al. 2012 • Additional EVLA observations now would be much more constraining 10 -4 yr -1 gal -1 • Upcoming radio surveys (e.g. ASKAP) will strongly constrain population of stable NS merger remnants ⇒ indirectly probes EoS

  26. Accretion-Induced Collapse (AIC) (e.g. Nomoto & Kondo 1991) • O-Ne WD built to M chandra • Collapse of rapidly-rotating WD ⇒ Disk around PNS: M disk ~ 10 -2 - 0.3 M  • Evolution similar to NS merger disks (Metzger+ 08,09) Nomoto & Kondo 1991

  27. Similar Systems - Distinct Origins NS-NS / BH-NS / BH-NS NS-NS BH Mergers Mergers M ~ 0.01-0.1 M 0.01-0.1 M  M ~  R ~ 100 km Accretion- Accretion- Induced Induced NS Collapse Collapse Neutron Star Circinus X-1 Γ > 15 ! (Fender et al. 2004)

  28. Theoretical Light Curves Magnetar wind confined by merger ejecta vs. observed X-ray tails (magnetar outflow model from Metzger et al. 2011) Merger P 0 = 1.5 ms, Jet B dip = 2 × 10 15 G Ejecta Bucciantini et al. 2011 Magnetar Wind

  29. The Composition of Ultra High Energy Cosmic Rays Pierre Auger Observatory protons RMS(X max ) 〈 X max 〉 Iron Highest energy Energy (eV) UHECRs dominated by heavy nuclei ! PAO Collaboration (review by Kotera & Olinto 2011)

  30. Candidate Astrophysical Sources Hillas: R L = E/ZeB < R source Magnetic Field Strength UHECR candidates Source Size

  31. Candidate Astrophysical Sources Hillas: R L = E/ZeB < R source Z ~ ?? Magnetic Field Strength UHECR candidates Z < 10 Z � Z < Z � Source Size

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend