gamma ray bursts
play

Gamma-Ray Bursts: 2. Long GRBs Brian Metzger, Columbia University - PowerPoint PPT Presentation

Gamma-Ray Bursts: 2. Long GRBs Brian Metzger, Columbia University Gamma-Ray Burst Durations long short Duration BATSE Bursts (from Nakar 2007) GRB 030329 and the Supernova Connection Exploding Wolf-Rayet Star radius R~10 11 cm (3


  1. Gamma-Ray Bursts: 2. Long GRBs Brian Metzger, Columbia University

  2. Gamma-Ray Burst Durations long short Duration BATSE Bursts (from Nakar 2007)

  3. GRB 030329 and the Supernova Connection Exploding “Wolf-Rayet” Star radius R~10 11 cm (3 light-seconds).

  4. GRB 030329 and the Supernova Connection ⇒ Long GRBs come from the deaths of massive Stars Exploding “Wolf-Rayet” Star radius R~10 11 cm Gamma-Ray Burst Galaxies (3 light-seconds). (courtesy A. Fruchter)

  5. The ‘Collapsar’ Model (Woosley 1993) “GRBs are powered by accretion onto a new formed black hole”

  6. Bl Black Ho Hole Model (Woosley 93; MacFadyen & Woosley 1999) Zhang, Woosley & Heger 2004 MacFadyen & Woosley 1999 % ( E ~ " j M # c 2 ~ 10 51 ergs " j % ( * M # M ! ' * • Energy Energy - Accretion Power ' 10 $ 3 & ) & ) 1/ 2 % ( • Duration Duration - Collapse Time of Star t ff ~ 3 " 32 G # $ ' * ~ 100 s & )

  7. L j < 10 " 3 ˙ c 2 M Generally inefficient:

  8. MHD Powered Jets (e.g. Blandford & Znajek 1978) Rezzolla et al. 2010 How is magnetic field generated?

  9. credit: Stan Woosley

  10. Mi Millisecond Ma Magnetar Mo Model (e.g. Usov 1992; Metzger et al. 2011) Bucciantini, Metzger et al. 2011 Ω Surrounding Star Magnetar Wind $ 2 E rot ~ 12 I " 2 ~ 3 # 10 52 ergs P 1 ms ( ) • Energy Energy - Rotation 2 + 4 % ( L sd = µ 2 " 4 B dip % ( P # 6 $ 10 49 erg s -1 • Luminosity - Luminosity - Dipole Radiation ' * ' * c 3 10 15 G & 1 ms ) & ) -2 2 $ ' B dip $ ' " sd = E rot P • Duration Duration - Spin-Down Time 0 # 10 min & ) & ) 10 15 G L sd 1 ms % ( % (

  11. Magnetars: Super-Magnetized Neutron Stars  Surface Magnetic Field 10 14 -10 15 G (would erase your credit card at distance of Sun).  Observationally classified as “soft gamma- ray repeaters” and “anomalous X-ray pulsars” SGR1806-20 Giant γ -Ray  “Giant Flares” every Flare in December 2004 ~10-100 years.  12 in Milky Way  Age: 10 3 -10 4 yrs  rotation period P ~ secs

  12. What Produces Magnetar Fields? ΔΩ All neutron stars form as hot, differentially-rotating ‘proto-neutron stars’ Dessart et al. 2006 V c rotational * 2 $ ' E rot = 1 P 2 I " 2 ~ 3 # 10 52 ergs & ) energy: % 1 ms ( 2 - 2 " E rot = B 2 ' * ' * 8 # $ 4 # 3 % B eq ~ 10 17 "& P 3 R ns G ) , ) , ( & /2 + ( 1 ms + Field amplification: • Shear instabilities (talk by Zrake) Magnetic activity of late type stars • Magneto-rotational instability Pizzolato et al. 2003 • α - Ω dynamo (Thompson & Duncan 1993) " ~ 4 # R 2 $ V c 3 , l P ~ 0.1 R NS L 1/ 3 , 1/ 3 & ) 5/ 3 & ) & ) l P + R NS & ) L $ % c ~ l P V c ~ 1 ms " ( + ( ( + ( + 10 14 g cm -3 10 52 erg s -1 0.1 R NS ' 12 km * ' * ' * ' * Ro ~ 1 for P ~ 1 ms Log ( Ro " P # c ) Rossby Number

  13. Core Collapse with Magnetic Fields & Rotation (e.g. LeBlanc & Wilson 1970) “Failed Collapsar” Neutron Star Mass ˙ M OUT ˙ M IN Time

  14. Neutrino Driven Wind Neutrinos heat proto-NS atmosphere ( e.g. ν e + n ⇒ p + e - ) ⇒ drives wind behind outgoing supernova shock (e.g. Qian & Woosley 96) Burrows, Hayes, & Fryxell 1995 5/ 3 10/ 3 $ ' $ ' L * # ⇒ crucial to baryon loading ˙ M ~ 10 " 4 M ! s " 1 # & ) & ) 10 52 erg s -1 % 10 MeV ( % (

  15. Neutrino Driven Wind Neutrinos heat proto-NS atmosphere ( e.g. ν e + n ⇒ p + e - ) ⇒ drives wind behind outgoing supernova shock (e.g. Qian & Woosley 96) Before SN Shock Launch After Shock Launch Neutrino-Heated Wind Burrows, Hayes, & Fryxell 1995 5/ 3 10/ 3 $ ' $ ' L * # ⇒ crucial to baryon loading ˙ M ~ 10 " 4 M ! s " 1 # & ) & ) 10 52 erg s -1 % 10 MeV ( % (

  16. Effects of Strong Magnetic Fields • Microphysics (EOS, ν Heating & Cooling) “Helmet - Streamer” – Important for B ≥ 10 16 G (Duan & Qian 2005) Ω

  17. Effects of Strong Magnetic Fields • Microphysics (EOS, ν Heating & Cooling) “Helmet - Streamer” – Important for B ≥ 10 16 G (Duan & Qian 2005) • Magneto-Centrifugal Slinging (Weber & Davis 1967; Thompson, Chang & Quataert 2004) Ω Outflow Co-Rotates with Neutron Star when B 2 8 " > 12 # v r 2 R A R heat ⇒ Magneto-Centrifugal Acceleration (“Beads on a Wire”) Top View

  18. Regimes of Magnetized PNS Winds (B = 3 × 10 14 G) Metzger, Thompson, Quataert 2007 Neutrino Luminosity (10 51 erg s -1 ) Thermally-Driven Magnetically-Driven, Mildly Relativistic Magnetically-Driven, Ultra-Relativistic Rotation Period (ms)

  19. Regimes of Magnetized PNS Winds (B = 3 × 10 14 G) Metzger, Thompson, Quataert 2007 Thermally-Driven Neutrino Luminosity (10 51 erg s -1 ) t ~ 1 s Magnetically-Driven, Mildly Relativistic Magnetically-Driven, Ultra-Relativistic t ~ 100 s Rotation Period (ms)

  20. Regimes of Magnetized PNS Winds (B = 3 × 10 14 G) Metzger, Thompson, Quataert 2007 Thermally-Driven Neutrino Luminosity (10 51 erg s -1 ) t ~ 1 s Magnetically-Driven, Mildly Relativistic Magnetically-Driven, Ultra-Relativistic t ~ 100 s Rotation Period (ms)

  21. Evolution of Proto-Magnetar Outflows (BDM et al. 2007, 2011) Neutrino Cooling Evolution NS Cooling Luminosity Roberts 2012 3D Magnetosphere Geometry (e.g. Bucciantini et al. 2006; Spitkovsky 2006) Wind Power ˙ (t), Mass Loss Rate ˙ E M (t), Calculate: " 'Magnetization' # (t) ~ ˙ E ˙ c 2 = $ max (t) M In terms of Initial rotation period P 0 , dipole field B dip & obliquity θ dip

  22. Example Solution magnetization " 0 ~ # max spin - down power ˙ iso /10 50 erg s -1 E ˙ B 2 % 4 E " 0 ~ # c 2 $ max = increases as magnetar cools ˙ 5/3 T 10/3 M L &

  23. Collimation via Stellar Confinement Multi-Wavelength Crab Nebula PWN OPTICAL RADIO X-RAYS SNR PULSAR 3C58 (Chandra)

  24. Collimation via Stellar Confinement Multi-Wavelength Crab Nebula PWN OPTICAL RADIO X-RAYS Ω SNR PULSAR Ω Supernova remnant elongated by anisotropic magnetic stresses in pulsar nebula? (Begelman & Li 1992) 3C58 (Chandra)

  25. Outgoing SN shock V SN ~ 0.1 c

  26. Outgoing SN shock V SN ~ 0.1 c Fast Magnetar Wind V w ~ c

  27. Outgoing SN shock V SN ~ 0.1 c

  28. Outgoing SN shock V SN ~ 0.1 c

  29. Jet Formation via Stellar Confinement (Bucciantini et al. 2007, 08, 09; cf. Uzdensky & MacFadyen 07; Komissarov & Barkov 08) Zoom Out Kink Instability Jet power & mass-loading 2D 3D Porth, Komissarov, & Keppens 13 match (on average) outflow from central magnetar

  30. Non-Relativistic ( σ 0 < 1) Relativistic ( σ 0 > 1) Jet Break-Out " 0 ˙ iso /10 50 erg s -1 E Outflow becomes relativistic at t ~ 2 seconds; Jet breaks out of star at t bo ~ R  / β c ~ 10 seconds

  31. Non-Relativistic ( σ 0 < 1) Relativistic ( σ 0 > 1) Jet Break-Out Jet Break-Out ← GRB → " 0 ˙ iso /10 50 erg s -1 E Outflow becomes relativistic at t ~ 2 seconds; Jet breaks out of star at t bo ~ R  / β c ~ 10 seconds

  32. GRB Em GRB Emissi ssion on - What hat, Where, here, How? How? Relativistic Outflow ( Γ >> 1) Photospheric IC ~ 10 7 cm Central Engine GRB / Flaring Afterglow 1. What is jet’s composition? (kinetic or magnetic?) 2. Where is dissipation occurring? (photosphere? deceleration radius?) 3. How is radiation generated? (synchrotron, IC, hadronic?)

  33. Time-Averaged Light Curve Metzger et al. 2011 ˙ E jet Optically-Thick Optically-Thin Jet Break-Out Photospheric Dissipation (IC)

  34. Time-Averaged Light Curve Metzger et al. 2011 ˙ E jet Optically-Thick Optically-Thin Jet Break-Out Spectral Snapshots E F E (10 50 erg s -1 ) IC Tail BB Synch t ~ 15 s t ~ 30 s Hot Electrons ⇒ IC Scattering ( γ -rays) and Synchrotron (optical) E (keV)

  35. End of the GRB = Neutrino Transparency? Ultra High- σ Outflows baryons e - /e + pairs ⇒ - Acceleration is Inefficient ← GRB → (e.g. Tchekhovskoy et al. 2009) - Internal Shocks are Weak " 0 (e.g. Kennel & Coroniti 1984) - Reconnection is Slow (e.g. Drenkahn & Spruit 2002) ˙ iso /10 50 erg s -1 E T GRB ~ T ν thin ~ 20 - 100 s

  36. End of the GRB = Neutrino Transparency? Ultra High- σ Outflows baryons e - /e + pairs ⇒ - Acceleration is Inefficient ← GRB → (e.g. Tchekhovskoy et al. 2009) - Internal Shocks are Weak " 0 (e.g. Kennel & Coroniti 1984) - Reconnection is Slow (e.g. Drenkahn & Spruit 2002) ˙ iso /10 50 erg s -1 E Steep Decline T GRB ~ T ν thin ~ 20 - 100 s Low plateau efficiency consistent with Lu & Zhang 2014

  37. ← GRB → Late-Time Spin-Down τ SD ˙ iso /10 50 erg s -1 E e.g. Zhang & Meszaros 2001; Troja et al. 2007; Yu et al. 2009; Lyons et al. 2010

  38. ← GRB → X-ray Afterglow Late-Time Spin-Down Willingale et al. 2007 `Plateau’ τ SD ˙ iso /10 50 erg s -1 E e.g. Zhang & Meszaros 2001; Troja et al. 2007; Time after trigger (s) Yu et al. 2009; Lyons et al. 2010; Rowlinson et al. 2010, 2013; Gompertz et al. 2013

  39. A Diversity of Magnetar Birth Classical GRB E γ ~10 50-52 ergs, τ jet < 1, Γ ~ 10 2 -10 3 B dip (G) P 0 (ms)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend