energy limited escape revisited
play

Energy-limited escape revisited: A transition from strong planetary - PowerPoint PPT Presentation

Energy-limited escape revisited: A transition from strong planetary winds to stable thermospheres Michael Salz 1 , P. C. Schneider, S. Czesla, J. H. M. M. Schmitt 1Hamburger Sternwarte, Universitt Hamburg msalz@hs.uni-hamburg.de OHP 2015 :


  1. Energy-limited escape revisited: A transition from strong planetary winds to stable thermospheres Michael Salz 1 , P. C. Schneider, S. Czesla, J. H. M. M. Schmitt 1Hamburger Sternwarte, Universität Hamburg msalz@hs.uni-hamburg.de OHP 2015 : Twenty years of giant exoplanets - October 8, 2015

  2. Hot gas planets WASP-12 distance < 0.1 AU (Mercury: 0.4 AU) irradiation level: 10 2 - 10 5 times Earth's → hot expanded atmospheres Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  3. Formation of a planetary wind WASP-12 eff. grav. potential Roche lobe high-energy irrad. causes continuous atmos. expansion → a planetary wind develops → persistent mass-loss Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  4. Energy-limited mass loss energy conservation: area: A absorbed energy is converted F EUV to gravitational potential energy → mass loss: . A ⨉ F EUV ) ( cm 2 erg/(cm 2 s 1) g = M = ΔΦ G erg/g s R pl R Rl Gravitational potential heating efficiency correction: η . ΔΦ G A ⨉ η ⨉ F EUV = M ΔΦ G (e.g., Erkaev et al. 2007) Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  5. Observational evidence HD 209458 planet → 1.5 % R = 2.63 Rpl → 10 % • first evidence: ∼ 10% Lyα absorption in HD 209458 b (Vidal-Madjar et al. 2003) • confirmed in 5 more obs. (H, C, O, Si, Mg) • expanded atmospheres: HD 189733 b, WASP-12 b, GJ 436 b (indications in 55 Cnc b) Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  6. Complex environment stellar wind confinement photoevaporation magnetic confinement stellar wind interaction + radiation pressure → cometary tail → no generally accepted theory Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  7. Approach 1D HD simulations of spherically symmetric planetary winds new: • all systems in the solar neighborhood • detailed photoionization solver Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  8. Approach 1D HD simulations of spherically symmetric planetary winds new: • all systems in the solar neighborhood • detailed photoionization solver = TPCI PLUTO + CLOUDY hydrodynamics: photoionization solver: • 1D spherical grid • equilibrium state of medium • gravity under strong irradiation • thermal • absorption and emission conduction Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  9. Atmosphere of HD 209458 b 10 13 10 13 HD 209458 b HD 209458 b Density (cm -3 ) Density (cm -3 ) 10 10 10 10 10 7 10 7 Temp. (1000 K) Temp. (1000 K) 10 10 6 6 2 2 10 1 10 1 Velocity (km s -1 ) Velocity (km s -1 ) 10 -1 10 -1 10 -3 10 -3 1 1 2 2 3 3 4 4 5 5 Radius (R pl ) Radius (R pl ) Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  10. HD 209458 b and HD 189733 b 10 13 10 13 HD 209458 b HD 209458 b Density (cm -3 ) Density (cm -3 ) HD 189733 b HD 189733 b 10 10 10 10 10 7 10 7 Temp. (1000 K) Temp. (1000 K) 10 10 6 6 2 2 10 1 10 1 Velocity (km s -1 ) Velocity (km s -1 ) 10 -1 10 -1 10 -3 10 -3 1 1 2 2 3 3 4 4 5 5 Radius (R pl ) Radius (R pl ) Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  11. HD 209458 b and HD 189733 b HD 189733 b irradiation 16 times higher - Why wind weaker? free-free free-free Ly α Ly α emission emission (heating - cooling)/heating (heating - cooling)/heating 1.0 1.0 0.5 0.5 HD 209458 b HD 209458 b HD 189733 b HD 189733 b 0.0 0.0 1 1 2 2 3 3 4 4 5 5 Radius (R pl ) Radius (R pl ) → strong radiative cooling → η eff different Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  12. Revised energy-limited escape higher gravity → hotter atmosphere → more rad. cooling → smaller η eff WASP-77 b WASP-77 b WASP-43 b WASP-43 b CoRoT-2 b CoRoT-2 b -1 -1 log 10 ( η eva ) log 10 ( η eva ) -2 -2 HD 209458 b HD 209458 b HD 189733 b HD 189733 b -3 -3 HD 149026b HD 149026b HD 97658 b HD 97658 b HAT-P-11 b HAT-P-11 b WASP-80 b WASP-80 b WASP-12 b WASP-12 b GJ 1214 b GJ 1214 b GJ 3470 b GJ 3470 b 55 Cnc e 55 Cnc e GJ 436 b GJ 436 b -4 -4 stable atmos. -5 -5 12.2 12.2 12.4 12.4 12.6 12.6 12.8 12.8 13 13 13.2 13.2 13.4 13.4 13.6 13.6 log 10 ( Φ G ) (erg g -1 ) log 10 ( Φ G ) (erg g -1 ) → a scaling law: η eff = η eff (Φ G ) . A ⨉ η ⨉ F EUV → estimates for the mass-loss rates: M = ΔΦ G (not only upper limits) valid for mini-Neptunes to massive hot Jupiters Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  13. Energy-limited escape revisited absorption small planets: strong Lyα absorption versus emission GJ 1214 GJ 1214 (M. Salz) GJ 3470 GJ 3470 HD 97658 HD 97658 55 Cnc e 55 Cnc e 12.5 12.5 GJ 436 GJ 436 HAT-P-11 HAT-P-11 log 10 ( Φ G ) (erg g -1 ) log 10 ( Φ G ) (erg g -1 ) HD 209458 HD 209458 HD 149026 HD 149026 13 13 WASP-80 WASP-80 WASP-12 WASP-12 HD 189733 HD 189733 WASP-77 WASP-77 13.5 13.5 WASP-43 WASP-43 WASP-8 WASP-8 CoRoT-2 CoRoT-2 WASP-10 WASP-10 14 14 HAT-P-2 HAT-P-2 HAT-P-20 HAT-P-20 massive planets: absorption 100 100 10 10 1 1 little OHP – October 8, 2015 Ly α absorption (%) Ly α absorption (%)

  14. Energy-limited escape revisited absorption small planets: strong Lyα absorption versus emission Ly α emission (%) Ly α emission (%) emission 10 -3 10 -3 10 -2 10 -2 little 0.1 0.1 10 10 1 1 → verify the hydrodynamic escape model GJ 1214 GJ 1214 (M. Salz) GJ 3470 GJ 3470 HD 97658 HD 97658 55 Cnc e 55 Cnc e 12.5 12.5 GJ 436 GJ 436 HAT-P-11 HAT-P-11 log 10 ( Φ G ) (erg g -1 ) log 10 ( Φ G ) (erg g -1 ) HD 209458 HD 209458 HD 149026 HD 149026 13 13 WASP-80 WASP-80 WASP-12 WASP-12 HD 189733 HD 189733 WASP-77 WASP-77 13.5 13.5 WASP-43 WASP-43 WASP-8 WASP-8 CoRoT-2 CoRoT-2 WASP-10 WASP-10 14 14 HAT-P-2 HAT-P-2 HAT-P-20 HAT-P-20 massive planets: absorption 100 100 10 10 1 1 little OHP – October 8, 2015 Ly α absorption (%) Ly α absorption (%) emission strong

  15. Summary Simulations of planetary winds in solar neighborhood: • strong radiative cooling in massive planets → new scaling law for heating efficiency → mass-loss estimates for all hot gas planets • Lyα absorption and emission signals → show trend depending on grav. potential → can be tested observationally Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  16. Outlook Simulations: • include metals in the simulations → compute metal absorption and compare with obs. • simulate molecular outflow in planets further out (55 Cnc b, Venus + Earth + Mars) • simulate full 3D picture with stellar wind and radiation pressure (GJ 436 b) Observations: • X-ray observations to characterize the irradiation • HST snapshots to identify bright host stars • transit spectroscopy of WASP-80 b Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  17. Motivation: Lack of hot mini-Neptunes M > 10 M E gas planets rocky planets M < 10 M E 2500 Equilibrium temperature (K) close-in 2000 evaporate 1500 1000 further out 500 0 0.1 1 10 Density (g cm -3 ) (exoplanets.org 2015, repro. according Carter et al. 2012) Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  18. Settling phase Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  19. Lyα absorption of GJ 436 b Wavelength (Å) 1,215.0 1,215.5 1,216.0 1,216.5 12 2.0 H I Lyα blue wing 10 –2 s –1 Å –1 ) –2 s –1 ) 1.5 8 10 –14 erg cm 10 –14 erg cm 6 1.0 4 Flux (× Flux (× 2 0.5 0 0 –2 –4 –2 0 2 4 29.5 30.5 –200 –100 0 100 200 Velocity (km s –1 ) Time from mid-transit (h) (Ehrenreich et al. 2015) Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  20. Compute Lyα absorption simulations: real situation: spherically symmetric non-symmetric + interactions host star host star unbound hydrogen h e l h e l c o c o o b o b e e R R atmosphere planet planet → absorption of atmosphere below Roche lobe can be computed → only estimate the absorption strength of unbound hydrogen (no radial velocity) total absorption depth ∼ amount of neutral hydrogen Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  21. Lyα absorption signals 23% 8% 3% 1% observed: verify trend → 20% 19% 10% 2% by further simulated: observations integrated absorption (± 200 km s -1 ) Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

  22. Lyα absorption signals 23% 8% 3% 1% observed: verify trend → 20% 19% 10% 2% by further simulated: observations integrated absorption (± 200 km s -1 ) Energy-limited escape revisited (M. Salz) OHP – October 8, 2015

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend