schubert polynomials pipe dreams and associahedra
play

Schubert polynomials, pipe dreams, and associahedra Evgeny Smirnov - PowerPoint PPT Presentation

Schubert polynomials, pipe dreams, and associahedra Evgeny Smirnov Higher School of Economics Department of Mathematics Laboratoire J.-V. Poncelet Moscow, Russia Askoldfest, Moscow, June 4, 2012 Evgeny Smirnov (HSE & Labo Poncelet)


  1. Schubert polynomials, pipe dreams, and associahedra Evgeny Smirnov Higher School of Economics Department of Mathematics Laboratoire J.-V. Poncelet Moscow, Russia Askoldfest, Moscow, June 4, 2012 Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 1 / 18

  2. Outline General definitions 1 Flag varieties Schubert varieties and Schubert polynomials Pipe dreams and Fomin–Kirillov theorem Numerology of Schubert polynomials 2 Permutations with many pipe dreams Catalan numbers and Catalan–Hankel determinants Combinatorics of Schubert polynomials 3 Pipe dream complexes Generalizations for other Weyl groups Open questions 4 Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 2 / 18

  3. Flag varieties G = GL n ( C ) B ⊂ G upper-triangular matrices Fl ( n ) = { V 0 ⊂ V 1 ⊂ · · · ⊂ V n | dim V i = i } ∼ = G / B Theorem (Borel, 1953) Z [ x 1 , . . . , x n ] / ( x 1 + · · · + x n , . . . , x 1 . . . x n ) ∼ = H ∗ ( G / B , Z ) . This isomorphism is constructed as follows: V 1 , . . . , V n tautological vector bundles over G / B ; L i = V i / V i − 1 ( 1 ≤ i ≤ n ); x i �→ − c 1 ( L i ) ; The kernel is generated by the symmetric polynomials without constant term. Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 3 / 18

  4. Flag varieties G = GL n ( C ) B ⊂ G upper-triangular matrices Fl ( n ) = { V 0 ⊂ V 1 ⊂ · · · ⊂ V n | dim V i = i } ∼ = G / B Theorem (Borel, 1953) Z [ x 1 , . . . , x n ] / ( x 1 + · · · + x n , . . . , x 1 . . . x n ) ∼ = H ∗ ( G / B , Z ) . This isomorphism is constructed as follows: V 1 , . . . , V n tautological vector bundles over G / B ; L i = V i / V i − 1 ( 1 ≤ i ≤ n ); x i �→ − c 1 ( L i ) ; The kernel is generated by the symmetric polynomials without constant term. Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 3 / 18

  5. Flag varieties G = GL n ( C ) B ⊂ G upper-triangular matrices Fl ( n ) = { V 0 ⊂ V 1 ⊂ · · · ⊂ V n | dim V i = i } ∼ = G / B Theorem (Borel, 1953) Z [ x 1 , . . . , x n ] / ( x 1 + · · · + x n , . . . , x 1 . . . x n ) ∼ = H ∗ ( G / B , Z ) . This isomorphism is constructed as follows: V 1 , . . . , V n tautological vector bundles over G / B ; L i = V i / V i − 1 ( 1 ≤ i ≤ n ); x i �→ − c 1 ( L i ) ; The kernel is generated by the symmetric polynomials without constant term. Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 3 / 18

  6. Schubert varieties G / B = � w ∈ S n B − wB / B — Schubert decomposition ; X w = B − wB / B , where B − the opposite Borel subgroup; H ∗ ( G / B , Z ) ∼ w ∈ S n Z · [ X w ] as abelian groups. � = Question Are there any “nice” representatives of [ X w ] in Z [ x 1 , . . . , x n ] ? Answer: Schubert polynomials S w ( x 1 , . . . , x n − 1 ) ∈ Z [ x 1 , . . . , x n ] ; w ∈ S n � S w �→ [ X w ] ∈ H ∗ ( G / B , Z ) under the Borel isomorphism; Introduced by J. N. Bernstein, I. M. Gelfand, S. I. Gelfand (1978), A. Lascoux and M.-P. Sch¨ utzenberger, 1982; Combinatorial description: S. Billey and N. Bergeron, S. Fomin and An. Kirillov, 1993–1994. Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 4 / 18

  7. Schubert varieties G / B = � w ∈ S n B − wB / B — Schubert decomposition ; X w = B − wB / B , where B − the opposite Borel subgroup; H ∗ ( G / B , Z ) ∼ w ∈ S n Z · [ X w ] as abelian groups. � = Question Are there any “nice” representatives of [ X w ] in Z [ x 1 , . . . , x n ] ? Answer: Schubert polynomials S w ( x 1 , . . . , x n − 1 ) ∈ Z [ x 1 , . . . , x n ] ; w ∈ S n � S w �→ [ X w ] ∈ H ∗ ( G / B , Z ) under the Borel isomorphism; Introduced by J. N. Bernstein, I. M. Gelfand, S. I. Gelfand (1978), A. Lascoux and M.-P. Sch¨ utzenberger, 1982; Combinatorial description: S. Billey and N. Bergeron, S. Fomin and An. Kirillov, 1993–1994. Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 4 / 18

  8. Schubert varieties G / B = � w ∈ S n B − wB / B — Schubert decomposition ; X w = B − wB / B , where B − the opposite Borel subgroup; H ∗ ( G / B , Z ) ∼ w ∈ S n Z · [ X w ] as abelian groups. � = Question Are there any “nice” representatives of [ X w ] in Z [ x 1 , . . . , x n ] ? Answer: Schubert polynomials S w ( x 1 , . . . , x n − 1 ) ∈ Z [ x 1 , . . . , x n ] ; w ∈ S n � S w �→ [ X w ] ∈ H ∗ ( G / B , Z ) under the Borel isomorphism; Introduced by J. N. Bernstein, I. M. Gelfand, S. I. Gelfand (1978), A. Lascoux and M.-P. Sch¨ utzenberger, 1982; Combinatorial description: S. Billey and N. Bergeron, S. Fomin and An. Kirillov, 1993–1994. Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 4 / 18

  9. Pipe dreams Let w ∈ S n . Consider a triangular table filled by and � , such that: the strands intertwine as prescribed by w ; no two strands cross more than once ( reduced pipe dream). Pipe dreams for w = (1432) 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 � � � � � � � � � � � � � � � � 1 1 1 1 1 � � � � � � � � � 2 2 2 2 2 � � � � � � � 3 3 3 3 3 � � � � � 4 4 4 4 4 monomial x d ( P ) = x d 1 2 . . . x d n − 1 1 x d 2 Pipe dream P n − 1 , � d i = # { ’s in the i -th row } x 2 x 2 x 1 x 2 x 2 2 x 3 x 1 x 2 x 3 1 x 3 1 x 2 2 Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 5 / 18

  10. Pipe dreams Let w ∈ S n . Consider a triangular table filled by and � , such that: the strands intertwine as prescribed by w ; no two strands cross more than once ( reduced pipe dream). Pipe dreams for w = (1432) 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 � � � � � � � � � � � � � � � � 1 1 1 1 1 � � � � � � � � � 2 2 2 2 2 � � � � � � � 3 3 3 3 3 � � � � � 4 4 4 4 4 monomial x d ( P ) = x d 1 2 . . . x d n − 1 1 x d 2 Pipe dream P n − 1 , � d i = # { ’s in the i -th row } x 2 x 2 x 1 x 2 x 2 2 x 3 x 1 x 2 x 3 1 x 3 1 x 2 2 Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 5 / 18

  11. Pipe dreams Let w ∈ S n . Consider a triangular table filled by and � , such that: the strands intertwine as prescribed by w ; no two strands cross more than once ( reduced pipe dream). Pipe dreams for w = (1432) 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 � � � � � � � � � � � � � � � � 1 1 1 1 1 � � � � � � � � � 2 2 2 2 2 � � � � � � � 3 3 3 3 3 � � � � � 4 4 4 4 4 monomial x d ( P ) = x d 1 2 . . . x d n − 1 1 x d 2 Pipe dream P n − 1 , � d i = # { ’s in the i -th row } x 2 x 2 x 1 x 2 x 2 2 x 3 x 1 x 2 x 3 1 x 3 1 x 2 2 Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 5 / 18

  12. Pipe dreams Let w ∈ S n . Consider a triangular table filled by and � , such that: the strands intertwine as prescribed by w ; no two strands cross more than once ( reduced pipe dream). Pipe dreams for w = (1432) 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 � � � � � � � � � � � � � � � � 1 1 1 1 1 � � � � � � � � � 2 2 2 2 2 � � � � � � � 3 3 3 3 3 � � � � � 4 4 4 4 4 monomial x d ( P ) = x d 1 2 . . . x d n − 1 1 x d 2 Pipe dream P n − 1 , � d i = # { ’s in the i -th row } x 2 x 2 x 1 x 2 x 2 2 x 3 x 1 x 2 x 3 1 x 3 1 x 2 2 Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 5 / 18

  13. Pipe dreams and Schubert polynomials Theorem (S. Fomin, An. Kirillov, 1994) Let w ∈ S n . Then � x d ( P ) , S w ( x 1 , . . . , x n − 1 ) = w ( P )= w where the sum is taken over all reduced pipe dreams P corresponding to w . Example S 1432 ( x 1 , x 2 , x 3 ) = x 2 2 x 3 + x 1 x 2 x 3 + x 2 1 x 3 + x 1 x 2 2 + x 2 1 x 2 . Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 6 / 18

  14. Pipe dreams and Schubert polynomials Theorem (S. Fomin, An. Kirillov, 1994) Let w ∈ S n . Then � x d ( P ) , S w ( x 1 , . . . , x n − 1 ) = w ( P )= w where the sum is taken over all reduced pipe dreams P corresponding to w . Example S 1432 ( x 1 , x 2 , x 3 ) = x 2 2 x 3 + x 1 x 2 x 3 + x 2 1 x 3 + x 1 x 2 2 + x 2 1 x 2 . Evgeny Smirnov (HSE & Labo Poncelet) Schubert polynomials and combinatorics Moscow, June 4, 2012 6 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend