scattering in a euclidean formulation of relativistic
play

Scattering in a Euclidean formulation of relativistic quantum - PowerPoint PPT Presentation

Scattering in a Euclidean formulation of relativistic quantum mechanics W. N. Polyzou The University of Iowa Contributors (students/former students) Victor Wessels: Few-Body Systems, 35(2004)51 Philip Kopp: Phys. Rev. D85,016004(2012) Gordon


  1. Scattering in a Euclidean formulation of relativistic quantum mechanics W. N. Polyzou The University of Iowa

  2. Contributors (students/former students) Victor Wessels: Few-Body Systems, 35(2004)51 Philip Kopp: Phys. Rev. D85,016004(2012) Gordon Aiello: Phys. Rev. D93,056003(2016) Gohin Samad Useful discussions with colleagues at Iowa F. Coester P. Jørgensen

  3. Motivation and Observations • Constructing relativistic quantum mechanical models satisfying cluster properties is complicated. • Locality is logically independent of the rest of the axioms of Euclidean field theory → Euclidean formulation of relativistic quantum theory satisfying cluster properties. • Reconstruction theorem: The physical Hilbert space and a unitary representation of the Poincar´ e group can be directly formulated in the Euclidean representation. Analytic continuation is not necessary. • Given these elements it should be possible to formulate a relativistic treatment of scattering in a Euclidean representation using standard quantum mechanical methods.

  4. Elements of relativistic quantum mechanics � ψ | φ � Hilbert space U (Λ , a ) ↔ { P µ , J µν } Relativity P 0 = H Dynamics P 0 = H ≥ 0 Spectral condition → stability ( x i − x j ) 2 → ∞ [ U (Λ , a ) − ⊗ U i (Λ , a )] | ψ � → 0 Cluster properties: scattering asymptotic conditions

  5. Osterwalder-Schrader (Euclidean) reconstruction Input: { G En (x 1 , · · · , x n ) } Relevant properties • Euclidean covariant (invariant) • Cluster property • Reflection positivity

  6. Construction of the physical Hilbert space: H M Vectors (dense set) ψ ( x ) := ( ψ 1 (x 11 ) , ψ 2 (x 21 , x 22 ) , · · · ) 0 < x 0 n 1 < x 0 n 2 < · · · < x 0 ψ n (x n 1 , x n 2 , · · · , x nn ) = 0 unless nn . θ x := θ ( τ, x ) = ( − τ, x ) Euclidean time reflection Physical Hilbert space inner product � � d 4 k xd 4 n y ψ ∗ � ψ | φ � M = ( θψ, G E φ ) E = n ( θ x n 1 , θ x n 2 , · · · , θ x nn ) × kn G E , n + k (x nn , · · · , x 1 n ; y 1 k , · · · , y kk ) φ k (y k 1 , y k 2 , · · · , y kk ) All variables are Euclidean - no analytic continuation.

  7. Reflection positivity - property of { G En } � ψ | ψ � M = ( ψ, Π + > Θ G E Π + > ψ ) E ≥ 0 ⇓ Gives the physical Hilbert space and spectral condition.

  8. Illustration Two-point Green function: Euclidean → Minkowski � φ ∗ ( − τ x , x ) d 4 p ρ ( m ) dm e ip · ( x − y ) p 2 + m 2 ψ ( τ y , y ) d 4 xd 4 y � φ | ψ � M = (2 π ) 4 � m ( p ) d p ρ ( m ) dm ξ ∗ = χ m ( p ) 2 e m ( p ) Euclidean wave function → Minkowski wave function � d 4 y (2 π ) 3 / 2 e − e m ( p ) τ y − i p · y ψ ( τ y , y ) χ m ( p ) := � d 4 x (2 π ) 3 / 2 e − e m ( p ) τ x − i p · x φ ( τ x , x ) ξ m ( p ) := m 2 ψ ( τ x , x ) = ∇ 2 4 ψ ( τ x , x )

  9. Euclidean invariance → Poincar´ e invariance Relativity and SL (2 , C ) × SL (2 , C ) � t + z � i τ + z � � x − iy x − iy X m := X e := x + iy t − z x + iy i τ − z det ( X M ) = t 2 − x 2 det ( X E ) = − ( τ 2 + x 2 ) X → X ′ = AXB t det ( A ) = det ( B ) = 1 Preserves both t 2 − x 2 and τ 2 + x 2 Complex Lorentz group = complex orthogonal group Real orthogonal group = subgroup of complex Lorentz group Real Lorentz ( A , B ) = ( A , A ∗ ) , A ∈ SL (2 , C ) ; Real orthogonal ( A , B ) ∈ SU (2) × SU (2)

  10. Relation between Euclidean and Poincar´ e generators • Euclidean time translations → contractive Hermitian semigroup on H M : H E = P 0 E = − iH M = − iP 0 M • Euclidean space-time rotations → local symmetric semigroup on H M : J 0 j E = iJ 0 j M = iK j • Euclidean space rotations → unitary one parameter groups on H M : J ij E = J ij M • Euclidean space translations → unitary one parameter groups on H m : P i E = P i M { P µ M , J µν M } = 10 self-adjoint generators satisfying the Poincar´ e commutation relations on H M

  11. Spinless case n ∂ � H ψ n (x n 1 , x n 2 , · · · , x nn ) = ψ n (x n 1 , x n 2 , · · · , x nn ) ∂ x 0 nk k =1 n ∂ � P ψ n (x n 1 , x n 2 , · · · , x nn ) = − i ψ n (x n 1 , x n 2 , · · · , x nn ) ∂ x nk k =1 n ∂ � J ψ n (x n 1 , x n 2 , · · · , x nn ) = − i x nk × ψ n (x n 1 , x n 2 , · · · , x nn ) ∂ x nk k =1 n ∂ ∂ � − x 0 K ψ n (x n 1 , x n 2 , · · · , x nn ) = ( x nk ) ψ n (x n 1 , x n 2 , · · · , x nn ) . nk ∂ x 0 ∂ x nk nk k =1 All integration variables are Euclidean; Minkowski time is a parameter .

  12. Cluster properties G E , n + m → G E , n G E , m ⇓ Generators become additive in asymptotically separated subsystems Used to formulate scattering asymptotic conditions.

  13. Multichannel scattering theory Scattering probability = | S fi | 2 = |� ψ + | ψ − �| 2 | ψ ± � = Ω ± | ψ 0 ± � � e iHt � e − ie n t Ω ± | ψ 0 ± � = lim | φ n , p n , µ n � f n ( p n , µ n ) d p n t →±∞ � �� � � �� � n e − iH 0 t | ψ 0 ±� � �� � J t →±∞ e iHt Je − iH 0 t | ψ 0 ±� = lim Elements: Cluster properties, subsystem bound states: | φ n � , wave packets: f n , dynamics: H , strong limits.

  14. Field theoretic implementation: Haag-Ruelle scattering (Minkowski case) Φ( x ) = interpolating field � 1 ˜ e − ip · x Φ( x ) d 4 x Φ( p ) = (2 π ) 2 Φ( p ) , h ( − m 2 ) = 1 , h ( p 2 ) = 0 , − p 2 �∈ ( m 2 − ǫ, m 2 + ǫ ) Φ m ( p ) = h ( p 2 )˜ ˜ � 1 e ip · x ˜ Φ m ( p ) d 4 p Φ m ( x ) = (2 π ) 2 e − i √ � i p 2 + m 2 t + i p · x ˜ f m ( x ) = f ( p ) d p (2 π ) 3 / 2 � ∂ Φ m ( t , x ) � � f m ( t , x ) − Φ m ( t , x ) ∂ f m ( t , x ) a † m ( f m , t ) = − i d x − ∂ t ∂ t t →±∞ Π i a † Ω ± | ψ 0 ± � = s − lim m i ( f m i , t ) | 0 �

  15. Euclidean formulation of HR scattering - technical issues • ( M 2 = ∇ 2 ) One-body solutions must satisfy the time support condition: support ( h ( ∇ 2 ) � x | ψ � ) = support ( � x | ψ � ) • Products of one-body solutions must satisfy the relative time support condition ( n = 2 , no spin) . J : � x 1 | φ 1 , p 1 �� x 2 | φ 2 , p 2 � = 1 h 1 ( ∇ 2 1 ) δ (x 0 1 − τ 1 ) h 2 ( ∇ 2 2 ) δ (x 0 (2 π ) 3 e i p 1 · x 1 + i p 2 · x 2 2 − τ 2 ) τ 2 > τ 1

  16. • Delta functions in Euclidean time × f ( x ) are square integrable in H M ! • A sufficient condition for h i ( ∇ 2 ) to preserve the support condition is for polynomials in ∇ 2 to be complete with respect to the inner product on H M h i ( ∇ 2 ) ≈ P ( ∇ 2 ) • The J defined on the previous slide can be used to satisfy the time-support conditions.

  17. Completeness of P n ( ∇ 2 ) sufficient to construct h ( m 2 ) without violating positive Euclidean time-support condition. Proving completeness - Stieltjes moment problem G E 2 moments e − √ � ∞ m 2 + p 2 τ m 2 + p 2 ρ ( m ) m 2 n dm γ n := � 2 0 where τ = τ 1 + τ 2 > 0. Carleman’s condition ∞ � | γ n | − 1 2 n > ∞ n =0 Satisfied for ρ ( m 2 ) a tempered distribution ⇒ P ( ∇ 2 ) complete. 1 | γ n | − 1 2 n ∼ n + c

  18. Existence - sufficient condition (Cook) � ∞ � ( HJ − JH 0 ) U 0 ( ± t ) | ψ 0 �� M dt < ∞ a � ( HJ − JH 0 )Φ U 0 ( ± t ) | ψ 0 �� 2 M = ( ψ 0 U 0 ( ∓ t )( J † H − H 0 J † ) θ G E ( HJ − JH 0 ) U 0 ( ± t ) | ψ 0 ) E The effect of using one-body solutions for 2-2 scattering is that the contribution from the disconnected part of G E to the above is zero. This fails for LSZ scattering. The connected part is expected to behave like ct − 3 for large t , satisfying the Cook condition.

  19. Computational tricks for scattering Invariance principle: t →±∞ e iHt Je − iH 0 t | ψ � = t →±∞ e if ( H ) t Je − if ( H 0 ) t | ψ � lim lim f ( x ) = − e − β x n →∞ e ∓ ine − β H Je i ± ne − β H 0 | ψ � t →±∞ e iHt Je − iH 0 t | ψ � = lim lim σ ( e − β H ) ∈ [0 , 1] → | e inx − P ( x ) | < ǫ x ∈ [0 , 1] |� e ine − β H − P ( e − β H ) |� < ǫ Matrix elements of e − n β H are easy to calculate: � τ, x | e − n β H | ψ � = � τ − n β, x | ψ �

  20. Model tests (of computational methods) H = k 2 / m − λ | g �� g | ( M 2 = 4 k 2 + 4 m 2 − 4 m λ | g �� g | ) 1 � k | g � = k 2 + m 2 π Attractive - one pion exchange range, bound state with deuteron mass. e − 2 ine − β H ≈ P ( e − β H ) � k f | T ( E + i 0) | k i � ≈ � ψ f | ( I − e − ine − β M 0 P ( e − β H ) e − ine − β H 0 ) | ψ i � 2 π i � ψ f | δ ( E − H 0 ) | ψ i �

  21. • Choose sufficiently narrow initial and final wave packets. • Choose sufficiently large n . • Replace e 2 ine − β H by a polynomial approximation. • Calculations formally independent of β , adjust β for faster convergence. • Model allows independent tests of each approximation. • Approximations must be done in the proper order.

  22. Results • Converges to exact sharp momentum transition matrix elements. • Tests converge for . 050 − 2 GeV. • Biggest source of error is the wave packet width.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend