scattering amplitudes
play

Scattering Amplitudes LECTURE 2 Jaroslav Trnka Center for Quantum - PowerPoint PPT Presentation

Scattering Amplitudes LECTURE 2 Jaroslav Trnka Center for Quantum Mathematics and Physics (QMAP), UC Davis ICTP Summer School, June 2017 Review of Lecture 1 Spinor helicity variables Standard SO(3,1) notation for momentum p = ( p 0 , p


  1. Scattering Amplitudes LECTURE 2 Jaroslav Trnka Center for Quantum Mathematics and Physics (QMAP), UC Davis ICTP Summer School, June 2017

  2. Review of Lecture 1

  3. Spinor helicity variables ✤ Standard SO(3,1) notation for momentum p µ = ( p 0 , p 1 , p 2 , p 3 ) p j ∈ R p 2 = p 2 0 + p 2 1 + p 2 2 − p 2 ✤ Matrix representation 3 ✓ p 0 + ip 1 ◆ p 2 + p 3 p ab = σ µ ab p µ = p 2 − p 3 p 0 − ip 1 p 2 = det( p ab ) = 0 On-shell: Rank ( p ab ) = 1

  4. Spinor helicity variables ✤ Rewrite the four component momentum a λ 1 a e p µ 1 = σ µ λ 1˙ a ˙ a ✤ Little group scaling λ → t λ p → p λ → 1 e e λ t ✤ Invariants b e a e h 12 i ⌘ ✏ ab � 1 a � 2 b [12] ≡ ✏ ˙ � 1˙ � 2˙ a ˙ b s 12 = h 12 i [12]

  5. Three point amplitudes ✤ Three point kinematics p 2 1 = p 2 2 = p 2 p 1 + p 2 + p 3 = 0 3 = 0 ✤ Two solutions: h 12 i = h 23 i = h 13 i = 0 [12] = [23] = [13] = 0 λ 1 ∼ e e λ 2 ∼ e λ 1 ∼ λ 2 ∼ λ 3 λ 3 ( − − +) (+ + − ) No solution for real momenta ✓ [12] 3 ✓ h 12 i 3 ◆ S ◆ S E.g. spin-S amplitudes [23][31] h 23 ih 31 i

  6. T ree-level amplitudes ✤ Single function: locality and unitarity constraints 1 M − P 2 =0 M L P 2 M R − − → ✤ On-shell constructibility: amplitude fixed by poles ✤ Consistency of four point amplitude: only spins ≤ 2

  7. Recursion relations

  8. T ree level amplitudes ✤ Tree-level amplitude is a rational function of kinematics momenta N X A = (Feyn . diag) = polarization vectors j P 2 Q j Feynman propagators X P j = p k ✤ Only poles, no branch cuts k ✤ Gauge invariant object: use spinor helicity variables

  9. Reconstruction of the amplitude ✤ Amplitude on-shell constructible: fixed only from factorizations: try to reconstruct it 1 “Integrate the relation” M − P 2 =0 M L P 2 M R − − → 1 ✤ First guess: X M = M L P 2 M R P

  10. Reconstruction of the amplitude ✤ Amplitude on-shell constructible: fixed only from factorizations: try to reconstruct it 1 “Integrate the relation” M − P 2 =0 M L P 2 M R − − → 1 ✤ First guess: X WRONG M = M L P 2 M R P Overlapping factorization channels ✤ Solution: shift external momenta

  11. Momentum shift ✤ Let us shift two external momenta e λ 1 → e λ 1 → λ 1 − zλ 2 λ 1 λ 2 → e e λ 2 + z e λ 2 → λ 2 λ 1 ✤ Momentum is conserved, stays on-shell ( λ 1 − zλ 2 ) e λ 1 + λ 2 ( e λ 2 + z e λ 1 ) = λ 1 e λ 1 + λ 2 e λ 2 ✤ This corresponds to shifting p 1 , p 2 , ✏ 1 , ✏ 2

  12. Shifted amplitude ✤ On-shell tree-level amplitude with shifted kinematics A n ( z ) = A (ˆ p 1 ( z ) , ˆ p 2 ( z ) , p 3 , . . . , p n ) N ( z ) ✤ Analytic structure A n ( z ) = Q j P j ( z ) 2 P j ( z ) = P j − z λ 2 e p 1 ∈ P j ✤ Location of poles: λ 1 if P j ( z ) = P j + zλ 2 e p 2 ∈ P j λ 1 if P j ( z ) = P j otherwise

  13. Shifted amplitude ✤ On the pole if p 1 ∈ P j P j ( z ) 2 = P 2 j � 2 z h 1 | P j | 2] = 0 P 2 j z = 2 h 1 | P j | 2] ⌘ z j ✤ Shifted amplitude: location of poles N ( z ) A n ( z ) = Q j P j ( z ) 2

  14. Residue theorem N ( z ) ✤ Shifted amplitude A n ( z ) = Q k ( z − z k ) ✤ Let us consider the contour integral Z dz No pole at z → ∞ z A n ( z ) = 0 Residue at ✤ Original amplitude A n = A n ( z = 0) z = 0 ◆ � ✓ A n ( z ) � X ✤ Residue theorem: A n + Res = 0 � z � � k z = z k

  15. Residue theorem ◆ � ✓ A n ( z ) � X A n = − Res � z � � k z = z k P j ( z ) 2 = 0 Residue on the pole ✤ Unitarity of shifted tree-level amplitude 1 A n ( z ) − P j ( z ) 2 =0 A L ( z ) P j ( z ) 2 A R ( z ) − − − − − →

  16. Residue theorem ◆ � ✓ A n ( z ) � X A n = − Res � z � � k z = z k Residue on the pole P j ( z ) 2 = 2 h 1 | P j | 2]( z j � z ) = 0 P 2 j ✤ Unitarity of shifted tree-level amplitude z j = 2 h 1 | P j | 2] 1 A n ( z ) � z = z j A L ( z j ) � � ! 2 h 1 | P j | 2] A R ( z j )

  17. Residue theorem ◆ � ✓ A n ( z ) � X A n = − Res � z � � k z = z k 2 h 1 | P j | 2] A R ( z j ) ⇥ 2 h 1 | P j | 2] 1 = A L ( z j ) 1 A L ( z j ) A R ( z j ) P 2 P 2 j j Final formula P 2 A L ( z j ) 1 X j A n = − A R ( z j ) z j = P 2 2 h 1 | P j | 2] j j

  18. BCFW recursion relations (Britto, Cachazo, Feng, Witten, 2005) A L ( z j ) 1 P 2 X A n = − A R ( z j ) j z j = P 2 2 h 1 | P j | 2] j j Chosen such that internal line is on-shell ˆ 2 2 Sum over all distributions of legs keeping 1,2 on different sides

  19. Comment on applicability ✤ The crucial property is for A n ( z ) → 0 z → ∞ ✤ In Yang-Mills theory this is satisfied if λ 1 → λ 1 − z λ 2 Helicity + λ 2 → e e λ 2 + z e Helicity - λ 1 ✤ Same is true for Einstein gravity, and many others ✤ This means that amplitudes in these theories are fully specified by residues on their poles

  20. Generalizations ✤ In Standard Model and other theories more general recursion relations needed: shift more momenta ✤ Include masses: go back to momenta q 2 = ( p 1 · q ) = ( p 2 · q ) = 0 p 1 → p 1 + zq Shifted momenta on-shell, p 2 → p 2 − zq q completely fixed ✤ Extension to effective field theories (Cheung, Kampf, Novotny, JT, 2015)

  21. Example: amplitudes of gluons

  22. Color decomposition ✤ Sum of Feynman diagrams in Yang-Mills X M = (Color) × (Kinematics) F D Polarization vectors Gauge dependent ✤ Color factors Tr( T a 1 T a 2 T a 3 . . . T a n ) ✤ Decomposition Tr( T σ 1 T σ 2 T σ 3 . . . T σ n ) A (123 . . . n ) X M = σ

  23. Color decomposition ✤ Sum of Feynman diagrams in Yang-Mills X M = (Color) × (Kinematics) F D Polarization vectors Gauge dependent ✤ Color factors Tr( T a 1 T a 2 T a 3 . . . T a n ) ✤ Decomposition Tr( T σ 1 T σ 2 T σ 3 . . . T σ n ) A (123 . . . n ) X M = σ

  24. Color ordered amplitude A (123 . . . n ) Particles are ordered, other orderings: permutations Gauge invariant ✤ This is a key object of our interest ✤ Consider: All particles massless and on-shell All momenta incoming Helicities fixed

  25. Example 1: 4pt amplitude ✤ Let us consider amplitude of gluons A 4 (1 + 2 − 3 − 4 + ) 4 + 3 − Only one term P + P − contributes ˆ 1 + ˆ 2 − [ˆ ˆ h ˆ 14] 3 23 i 3 λ 1 = λ 1 − z λ 2 1 ˆ [ˆ h ˆ λ 2 = e e λ 2 + z e 1 P ][4 P ] 2 P ih 3 P i s 23 λ 1 z takes the value when P is on-shell momentum

  26. Example 1: 4pt amplitude ✤ Let us consider amplitude of gluons A 4 (1 + 2 − 3 − 4 + ) P 2 = h ˆ 14 i [14] = 0 z = h 14 i h ˆ 14 i = h 14 i � z h 24 i = 0 h 24 i We can now rewrite Shouten identity λ 1 = λ 1 � z λ 2 = λ 1 � h 14 i h 24 i λ 2 = h 12 i ˆ h 24 i λ 4 λ 1 = [12] λ 2 = e e λ 2 + z e e λ 3 Use of momentum [13] conservation

  27. Example 1: 4pt amplitude ✤ Let us consider amplitude of gluons A 4 (1 + 2 − 3 − 4 + ) λ 1 = h 12 i ˆ h 24 i λ 4 Calculate on-shell momentum P ✓ h 12 i ◆ λ 1 e λ 1 + λ 4 e λ 1 + e e P = ˆ λ 4 = λ 4 λ 4 h 24 i λ P = h 23 i λ P = λ 4 e e λ 3 h 24 i

  28. Example 1: 4pt amplitude ✤ Let us consider amplitude of gluons A 4 (1 + 2 − 3 − 4 + ) λ 1 = h 12 i 4 + 3 − ˆ h 24 i λ 4 P + P − λ 2 = [12] ˆ e e λ 3 [13] ˆ 1 + ˆ 2 − [ˆ h ˆ λ P = λ 4 14] 3 23 i 3 1 λ P = h 23 i [ˆ h ˆ 1 P ][4 P ] 2 P ih 3 P i s 23 e e λ 3 h 24 i

  29. Example 1: 4pt amplitude ✤ Let us consider amplitude of gluons A 4 (1 + 2 − 3 − 4 + ) λ 1 = h 12 i 4 + 3 − ˆ h 24 i λ 4 P + P − λ 2 = [12] ˆ e e λ 3 [13] ˆ 1 + ˆ 2 − [ˆ h ˆ λ P = λ 4 14] 3 23 i 3 1 λ P = h 23 i [ˆ h ˆ 1 P ][4 P ] 2 P ih 3 P i s 23 e e λ 3 h 24 i h 23 i 4 = h 12 ih 23 ih 34 ih 41 i

  30. Example 1: 4pt amplitude ✤ Let us consider amplitude of gluons A 4 (1 + 2 − 3 − 4 + ) 4 + 3 − P + P − One gauge invariant object equivalent to ˆ 1 + ˆ 2 − three Feynman diagrams

  31. Example 2: 6pt amplitude ✤ Let us consider and shift legs 3,4 A 6 (1 − 2 − 3 − 4 + 5 + 6 + ) 2 _ _ _ 1 2 _ _ _ _ 2 3 1 3 vs 3 _ 6 + + 220 Feynman + _ _ diagrams _ + + + 1 4 6 + 4 4 5 + + + + 6 5 5 (c) h 1 | 2 + 3 | 4] 3 h 1 | 2 + 3 | 4] = h 12 i [24] + h 13 i [34] [23][34] h 56 ih 61 i s 234 h 5 | 3 + 4 | 2]

  32. Example 2: 6pt amplitude ✤ Let us consider and shift legs 3,4 A 6 (1 − 2 − 3 − 4 + 5 + 6 + ) 2 _ _ _ 1 2 _ _ _ _ 2 3 1 3 3 _ 6 + + + _ _ _ + + + 1 4 6 + 4 4 5 + + + + 6 5 5 (c) h 1 | 2 + 3 | 4] 3 Spurious pole [23][34] h 56 ih 61 i s 234 h 5 | 3 + 4 | 2]

  33. Remark on BCFW ✤ Extremely efficient (3 vs 220 for 6pt, 20 vs 34300 for 8pt) ✤ Terms in BCFW recursion relations Gauge invariant Spurious poles ✤ Amplitude = sum of these terms dictated by unitarity ✤ Note: not all factorization channels are present when 1,2 are on the same side

  34. Unitarity methods

  35. One-loop amplitudes ✤ Sum of Feynman diagrams Z d I j = d 4 ` I j X M 1 − loop = where d I j j Rational ✤ Re-express as basis of canonical integrals Z Z Z d I (4) d I (3) d I (2) M 1 − loop = X X X + R a j b j c j + + j j j j j j Box Triangle Bubble

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend