scale space theory and pde based image filtering
play

Scale-space theory and PDE-based image filtering Nicolas Rougon - PowerPoint PPT Presentation

Foundations Linear scale-space Geometric scale-spaces Conservative scale-spaces Bibliography Scale-space theory and PDE-based image filtering Nicolas Rougon Institut Mines-Tlcom / Tlcom SudParis ARTEMIS Department; CNRS UMR 8145


  1. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Primary visual cortex ◮ The 6 LGN layers are mapped via the optic radiation to the primary visual cortex (V1) V7 V3a ◮ V1 maintains a retinotopic map The central 10° of the visual field occupies V3 roughly half of V1 V2 V1 This distorsion, called cortical magnification, V4 echoes the increased acuity of the fovea 5 6 7 8 9 4 The L(R) retinal hemifield is 1 2 3 7 89 1 2 4 3 5 6 6 mapped onto the R(L) 8 7 9 5 hemisphere V1 (lateralization) Scene RIGHT eye V1 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  2. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography V1 cells ◮ V1 neurons organize into a layered architecture I I Pyramidal cell II + III II III IVa IVa,b IVb IVc IVc V Axons V VI VI Stellate cell Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  3. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography V1 physiology ◮ V1 physiology and functional organization have been elucidated by David Hubel and Torsten Wiesel (Nobel Prize in Medecine, 1981) ◮ V1 neurons divide into simple / complex / hypercomplex cells. These 3 types differ by the way they respond to visual stimuli Neuron activity is monitored via electrophysiology Most V1 neurons are orientation selective i.e. respond strongly to lines/bars/edges with a specific orientation Some V1 neurons are direction selective i.e. respond strongly to oriented lines/bars/edges moving in a specific direction Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  4. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Receptive fields ◮ The LGN / V1 retinopic mapping enables correlating cell / neuron activity with retinal stimuli Receptive field Region of the retina influencing the activity of a cell / neuron assembly when exposed to a light stimulus Receptive fields of V1 simple cells best stimulus A B C D A elongated light bar B elongated dark bar C elongated dark bar D edge X excitatory zone inbibitory zone Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  5. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Receptive fields selectivity best cell type geometry binocular orientation direction disparity stimuli X-Y ganglion light no no no no M-P-K blob no no no no elongated simple yes some some some bar / edge elongated complex yes yes some yes bar / edge short edge hypercomplex yes yes some yes corner Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  6. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography V1 functional architecture ◮ V1 cells organize functionally into a columnar architecture Neurons with activity mainly Orientatjon influenced by one eye organize columns into ocular dominance columns Complex cells III IVa IVb Neurons with a given orientation Simple cells IVc selectivity organize into orientation Ocular columns dominance columns Contraletral eye Hypercolumns gather neurons Ipsilateral eye having the same receptive field location, but all different 6 5 4 orientation/direction selectivities 3 LGN 2 1 and both eye dominances Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  7. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography V1 functional architecture ◮ V1 columns can be investigated in vitro via histology in vivo via intrinsic optical imaging or high-field fMRI orientations columns ocular dominance columns Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  8. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Biological visual information processing ◮ Governing principles Retinopic mapping Retinal maps are preserved / registered along visual pathways Functional simplicity Visual cells / neurons are divided into a few specialized types with preferred response to a given class of stimuli Architectural efficiency Visual cells / neurons with the same dominance / selectivity organize into layers Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  9. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Biological visual information processing The human visual system ≡ a geometric engine ◮ Along the pathways to the cortex, visual information is processed in a massively parallel way locally at multiple integration scales hierarchically with no feedback in its early steps selectively with an increasing degree of nonlinearity ◮ These biological features are reflected by scale-space theory which can be seen as a mathematical theory of early vision Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  10. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Scale-space theory ◮ A deterministic framework for deriving hierarchical image / shape representations according to level of detail (LOD) based on continuous data modeling images as smooth functions over Ω ⊂ R n – shapes as smooth submanifolds of R n – applicable to nD , scalar/vector, still/animated data delivering scene decomposition into LOD – scene description at given LOD → filtering / restoration – relations between scene components at varying LODs – object assignment to distinctive scale range enabling multiscale image analysis – feature extraction – motion estimation / tracking – segmentation / grouping – scene / shape reconstruction Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  11. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Scale-space theory ◮ Though developed in image science, scale-space theory is deeply connected to calculus ◮ differential geometry | PDE theory | variational calculus theoretical physics ◮ quantum field theory behavioral / cognitive neurosciences ◮ neuropsychology | psychobiology | psychophysics Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  12. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Scale operators scale ◮ Scale-spaces are built / explored t using local image operators t 2 parameterized by a scale variable T t 1 , t 2 t ∈ [ t , t ] ⊂ R + t 1 T T t inner scale (pixel size) t 1 t 2 t t outer scale (image size) 0 image space scale operators T t produce images at scale t from original ones scale transition operators T t , t ′ generate images at scale t ′ from images at lower scale t the image family ( T t f ) t is the scale-space representation of the image f Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  13. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Structural axioms ◮ Causality axioms ensure that scale operators do not create details Semigroup Scale-spaces have a Associativity T t 1 T t 2 = T t 1 + t 2 hierarchical structure ≡ image pyramids Identity T 0 = I d Local comparison ∀ y ∈ N ( x ) f ( y ) > g ( y ) ⇒ ( T t f ) ( x ) > ( T t g ) ( x ) for any scale t less than an extinction scale t e Scale operators preserve ordering between image level sets during their lifetime t e in scale-space Scale operators do not enhance any image structures Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  14. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Structural axioms ◮ The smoothness axiom ensures that image simplification by scale operators is a C 1 -continuous process Smoothness Scale operators have a continuous derivative ∂ T at t = 0 T t f − f ∂ T f = lim t t → 0 ∂ T is known as the infinitesimal generator of the scale operator semigroup (or, in short, as the scale-space generator) Scale operators preserve image smoothness Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  15. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Structural axioms ◮ Smoothness axiom Let Q f , x be the quadratic approximation of the (locally smooth) image f over the neighborhood N ( x ) of pixel x ∈ R d Q f , x ( y ) = ( x − y ) T A ( x − y ) + p T ( x − y ) + c ( A symmetric ( d × d ) matrix, p ∈ R d , = c ∈ R The smoothness axiom states that T t Q f , x − Q f , x ∂ T Q f , x = lim t t → 0 is a function F ( A , p , c , x , t ) continuous w.r.t. the highest frequency component A Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  16. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Multiscale vs multiresolution representations ◮ Whereas scale-space methods operate on the original pixel grid, multiresolution techniques combine image simplication with grid decimation to yield image pyramids level subsampling (usually dyadic) u ( k − 1) = ↓ 2 u ( k ) n -2 smoothing n -1 N � u ( k − 1) ( x ) = c n u ( k ) (2 x − n ) n = − N n Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  17. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Multiscale vs multiresolution representations ◮ Low-pass pyramid c n ≥ 0 positivity unimodularity c | n | ≥ c | n | +1 symmetry c n = c − n � c n = 1 normalization � c 2 n = � c 2 n +1 equidistribution ◮ Example: Gaussian pyramids N = 1 (binomial filter) N = 2 ( a ≈ 0 . 4) � � � � 1 1 1 2 1 1 − 2 a 1 4 a 1 1 − 2 a 4 4 ◮ Differences of low-pass pyramids yield band-pass pyramids Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  18. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Multiscale vs multiresolution representations ◮ Gaussian scale-space t 0 1 2 3 4 ◮ Gaussian pyramid (rescaled to full resolution) 0 1 2 3 4 k Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  19. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Generating PDE Generating PDE The scale-space representation of the image f is the solution u ( x , t ) = ( T t f )( x ) of the PDE u t = ∂ T u with u ( · , 0) = f and Neumann (mirroring) boundary conditions ◮ Photometric interpretation: The generating PDE describes how luminance varies during a scale transition t 0 10 25 75 150 300 600 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  20. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Generating PDE ◮ Geometric interpretation: The generating PDE determines how image level sets evolve during a scale transition Level set evolution is described by a speed law x t = V ( x ) n along its external normal n = − ∇ u |∇ u | V ( x ) is obtained by substitution from differenciating the level set equation u ( x , t ) = c u t + ∇ u · x t = 0 Level set scale-space flow V ( x ) = ∂ T u |∇ u | Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  21. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Scale-space generators Representation theorem (Alvarez-Morel-Lions) Scale-space generators are differential operators of order n ≤ 2 ∂ T u = F ( D 2 u , Du , u ) ◮ The generating PDE combines 3 processes diffusion responsible for smoothing is driven by order-2 terms related to image curvature/convexity ◮ parabolic reaction responsible for transport is driven by order-1 terms related to local contrast/orientation ◮ hyperbolic addition responsible for luminance transformation is driven by order-0 terms ◮ The dominant process is dictated by the highest-order term Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  22. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Morphological axioms ◮ Morphological axioms state how scale operators depend / act on image content (involved features / targeted structures) ◮ Added to structural axioms, they allow for completely elucidating scale-space generators under closed-form ◮ They divide into 2 groups Linearity T t ( α u + β v ) = α T t u + β T t v Invariance ≡ commutation between scale operators and a specific group G of transforms strong t ′ = t – ∀ g ∈ G g T t ′ = T t g weak t ′ = ϕ ( t ) – (resynchronization) Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  23. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Morphological axioms ◮ Linearity Universality: scale-space is built w/o any prior assumption Blind processing: scale-space operators act similarly on image content whatever its (local) characteristics ◮ Invariance Introducing priors implies nonlinearity Globally: G models some variability on sensor The scale-space representation of an image does not depend on the related sensor calibration Locally: G models some variability on image content Scale operators act similarly on image structures whatever their related appearance Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  24. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Morphological axioms ◮ Photometric invariance G consists of transforms over the luminance interval [0 , 2 b − 1] group transforms invariance general invertible strong ( T t f ) t does not depend on sensor photometric calibration T t acts similarly on image content whatever its contrast Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  25. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Morphological axioms ◮ Spatial invariance G consists of transforms over the image domain R d group transforms invariance Euclidean isometry strong � t ′ = affine affine weak | det( g ) | t projective perspective weak ( T t f ) t does not depend on sensor geometric calibration Rotation-invariance ≡ T t has no preferred orientation Image processing is isotropic Zoom-invariance ≡ T t has no preferred extension Image structures are processed similarly whatever their size Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  26. Foundations Linear scale-space Motivation Geometric scale-spaces Biological foundations Conservative scale-spaces Mathematical foundations Bibliography Scale-space families ◮ Scale-spaces can be classified into 3 families depending on the set of selected morphological axioms Structural Morphological axioms axioms linearity invariance contrast Geometric non linear spatial Conservative linear Gaussian Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  27. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Outline Foundations 1 Linear scale-space 2 Geometric scale-spaces 3 Conservative scale-spaces 4 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  28. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Linear scale-space ◮ Assuming linearity leads to a single scale-space model Generating PDE (Marr-Koenderink-Witkin) There is a unique linear, isometry-invariant and zoom-invariant scale-space. Its generating PDE is the isotropic heat equation u t = ∆ u This model is referred to as the linear scale-space Its generator is the Laplacian operator ∂ T = ∆ Image simplification is performed via luminance diffusion Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  29. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Linear scale-space ◮ Solutions of linear PDEs are obtained by convolving their initial condition against a particular solution (kernel) The heat equation kernel is the isotropic Gaussian � � −| x | 2 1 G σ ( x ) = exp d 2 σ 2 (2 πσ 2 ) 2 Scale operators The scale-operators for the linear scale-space are Gaussian convolutions with variance proportional to scale T t = G √ 2 t ⋆ Equivalent terminology: Gaussian scale-space Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  30. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Extensions of linear scale-space ◮ Spatial frequency tuning: Gabor filters � � −| x | 2 1 G σ, k ( x ) = exp exp ( − i k · x ) 2 σ 2 d (2 πσ 2 ) 2 The wave vector k defines spatial orientation/frequency frequency Sampling the ( t , k )-space yields the Gabor space Widely used for texture modeling and discrimination in computer vision / pattern recognition ( e.g. character, fingerprint, iris) Relevant model for simple cells in mammals visual cortex orientatjon Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  31. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Extensions of linear scale-space ◮ Spatial tuning � � −| x − ξ | 2 1 G σ, ξ ( x ) = exp d 2 σ 2 (2 πσ 2 ) 2 Modeling receptive field assemblies in bio-inspired vision ◮ Spatio-temporal linear scale-space � � −| x | 2 − τ 2 1 1 G σ s , σ τ ( x ) = exp d 1 2 σ 2 2 σ 2 (2 πσ 2 (2 πσ 2 s ) τ ) 2 2 s τ σ 2 s = 2 t (spatial scale) | σ 2 τ = 2 τ (temporal scale) Multiscale modeling / analysis of video sequences Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  32. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Properties of linear scale-space ◮ Causality: the generating PDE verifies a maximum principle Ω × R + u ( x , t ) = max max u ( x , 0) Ω d = 1: non-creation of local extrema ( T t f ) t (∆ T t f = 0) t t e d > 1: non-enhancement of local extrema survival time t e is a measure of feature saliency Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  33. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Properties of linear scale-space ◮ Smoothness: the linear scale-space yields C ∞ image families ◮ Convolution theorem: image derivatives belong to scale-space ∂ x i y j u = G √ 2 t ⋆ ∂ x i y j f Image local geometry is extensively available in the linear scale-space ≡ universal front-end for image understanding Gaussian derivatives ≡ precomputable geometric kernels ∂ x i y j u = ∂ x i y j G √ 2 t ⋆ f Natural Gaussian derivatives w.r.t. normalized coordinates � x = x /σ are multiscale extensions of standard derivatives y j G √ t → 0 ∂ � lim 2 t = ∂ x i y j x i � Images are processed as distributions Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  34. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Properties of linear scale-space ◮ Gaussian differential kernels ( d = 2) G σ ( G σ ) x ( G σ ) y ( G σ ) xx ( G σ ) xy ( G σ ) yy ( G σ ) xxx ( G σ ) xxy ( G σ ) xyy ( G σ ) yyy D 2 n G σ are wavelets Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  35. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Properties of linear scale-space ◮ Multiscale feature extraction u |∇ u | ∆ u Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  36. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Properties of linear scale-space ◮ Isotropy: simplication is performed by diffusing out image blobs ◮ Separability: 1D computations In the spatial domain using order-4 IRR filters [Deriche] or Hermite polynomials H n � x � x G σ = ( − 1) n ∂ n H n G σ σ n σ x e − x 2 = ( − 1) n H n ( x ) e − x 2 ∂ n In the spectral domain using FFT G σ ⋆ f = FFT − 1 � � FFT( G σ ) · FFT( f ) Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  37. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Discrete linear scale-space ◮ Transposing the linear scale-space framework from R d to digital grids Ω ⊂ Z d is a hard problem Directly discretizing the Gaussian scale operators results in violating causality axioms ◮ An intrinsically discrete derivation of scale operators, ensuring that scale-space structural axioms hold over Z d , is mandatory The key point lies in satisfying the non-enhancement of local extrema property in a discrete setting Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  38. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Discrete linear scale-space 1D discrete linear scale-space (Lindeberg) The scale operators for the 1D discrete linear scale-space are convolutions against a discrete kernel T t T t = T t ⋆ which is related to Bessel functions J n T t ( n ) = e − α t I n ( α t ) I ± n ( t ) = ( − i ) n J n ( it ) T t is known as the discrete analog of the Gaussian kernel G σ Sampling the continuous Gaussian scale operators does not lead to discrete linear scale operators Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  39. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Discrete linear scale-space Generating PDE ( d = 1) (Lindeberg) The 1D discrete linear scale-space is generated by the semi-discrete heat equation � � u t ( x , t ) = 1 u ( x + 1 , t ) − 2 u ( x , t ) + u ( x − 1 , t ) 2 Its generator is the discrete Laplacian kernel � 1 � ∆ 3 = − 2 1 This PDE holds exactly Recursion properties of Bessel functions The discrete linear scale-space is properly derived by discretizing the continuous linear scale-space generator Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  40. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Discrete linear scale-space Generating PDE ( d = 2) (Lindeberg) A 2D discrete linear scale-space is generated by a semi-discrete heat equation ( α ∈ [0 , 1]) u t = α ∆ 4 u + (1 − α ) ∆ 8 u ∆ 4 , ∆ 8 are discrete Laplacian kernels     1 1 1 ∆ 8 = 1     ∆ 4 = 1 − 4 1 − 4     2 1 1 1 For d > 1, the discrete linear scale-space is not unique Each generator relates to a local topology on the image grid e.g. separability: α = 1 | isotropy: α = 2 3 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  41. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Discrete linear scale-space Generating PDE ( d = 3) (Lindeberg) A 3D discrete linear scale-space is generated by a semi-discrete heat equation ( α, β ∈ [0 , 1] 2 ) u t = α ∆ 6 u + β ∆ 18 u + (1 − α − β ) ∆ 26 u ∆ 6 , ∆ 18 , ∆ 26 are discrete Laplacian kernels � ∆ 6 u ijk = u lmn − 6 u ijk N ∗ 6 N ∗ 6 ( ijk ) � � � ∆ 18 u ijk = 1 u lmn − 12 u ijk N ∗ 4 18 \ 6 N ∗ 18 \ 6 ( ijk ) � � � ∆ 26 u ijk = 1 u lmn − 8 u ijk N ∗ 4 26 \ 18 N ∗ 26 \ 18 ( ijk ) Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  42. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Discrete linear scale-space ◮ Implementation Let ( ∂ T u ) ij be a discrete linear scale-space generator at pixel ij Finite difference discretization of u t ( u t ) ij = u ij ( t + δ t ) − u ij ( t ) δ t Explicit scheme � ∂ T u ( t ) � u ij ( t + δ t ) = u ij ( t ) + δ t ij Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  43. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Limitations of linear scale-space ◮ Oversmoothing artifacts due to strong regularization properties of Gaussian scale operators T t contrast loss of salient image structures ◮ Non-preservation of image geometry due to linearity and isotropy of Laplacian scale-space generators ∂ T delocation of image structures orientation smoothing ◮ complex multiscale image analysis schemes Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  44. Foundations Generating PDE & Scale operators Linear scale-space Properties Geometric scale-spaces Discrete linear scale-space Conservative scale-spaces Limitations Bibliography Limitations of linear scale-space t 0 4 16 64 256 ◮ Overcoming these limitations requires nonlinear and anisotropic scale-space models Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  45. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Outline Foundations 1 Linear scale-space 2 Geometric scale-spaces 3 Conservative scale-spaces 4 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  46. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Euclidean geometric scale-spaces Generating PDE (Alvarez-Morel-Lions) Contrast- and isometry-invariant scale-spaces are generated by reaction-diffusion PDEs of the form � curv( u ) � u t = |∇ u | F where F is an increasing function of image level set mean curvature � � ∇ u curv( u ) = ∇ · |∇ u | ◮ Geometric interpretation: Image simplification is performed by evolving level sets according to a purely geometric speed law � curv � u ( x ) �� V ( x ) = F These models are known as Euclidean geometric scale-spaces Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  47. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Euclidean geometric scale-spaces ◮ Classical models F ( x ) PDE type model reaction differential c (hyperbolic) mathematical morphology diffusion Euclidean intrinsic x (parabolic) scale-space reaction-diffusion entropic c + α x (parabolic) scale-space Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  48. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Morphological scale-spaces ◮ Multiscale structuring elements � x � Functions: g t ( x ) = tg Sets: tB = { tb : b ∈ B } t g 0 ( 0 ) = 0 0 B = { 0 } Multiscale morphological operators E g t f = f ⊖ ˇ E g g t Multiscale erosion with 0 = I d t f = f ⊕ ˇ D g D g Multiscale dilation g t with 0 = I d E g and D g t are dual operators t Multiscale erosions/dilations w.r.t. structuring sets are derived by using flat structuring functions g : B → { 0 } Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  49. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Morphological scale-spaces Scale-space structure (Brockett-Maragos) Multiscale dilations D g t (erosions E g t ) are scale operators D g t 1 D g t 2 = D g E g t 1 E g t 2 = E g ◮ Semigroup: and t 1 + t 2 t 1 + t 2 for nonnegative concave functions g ( i.e. with convex subgraph) ◮ Local comparison: D g t ( E g t ) is an increasing operator ◮ Smoothness: Modeling images as Lipschitz functions, the semi- � D g � � E g � t ) has an infinitesimal generator ∂ D g ( ∂ E g ) group t ( t t ∂ E g = − ∂ D g Duality: Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  50. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Morphological scale-spaces Generating PDE (Brockett-Maragos-Boomgaard) Morphological scale-spaces are generated by eikonal equations i.e. (hyperbolic) Hamilton-Jacobi PDEs dilation PDE V ( x ) g u t = |∇ u | 1 unit ball 1 u t = max | u x i | |∇ u | max | u x i | unit diamond � � 1 u t = | u x i | | u x i | unit cube |∇ u | � � 1 + g 2 ( 0 ) |∇ u | 2 + g 2 ( 0 ) u t = unit disc |∇ u | 2 u t = |∇ u | 2 |∇ u | parabola Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  51. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Morphological scale-spaces ◮ Implementation In order to handle shocks along image level sets concavities, the generators ∂ T u are discretized using entropic schemes based on lateral finite difference approximations of ∇ u D + x u ij = u i +1 , j − u ij D − = u ij − u i − 1 , j x u ij D + = u i , j +1 − u ij y u ij D − = u ij − u i , j − 1 y u ij Explicit scheme � ∂ T u ( t ) � u ij ( t + δ t ) = u ij ( t ) + δ t ij Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  52. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Morphological scale-spaces ◮ Implementation Spherical dilation ∂ T u = |∇ u | � � � � 2 � � D + � 2 + min � D − |∇ u ij | = max ξ u ij , 0 ξ u ij , 0 ξ = x , y ∂ T u = −|∇ u | Spherical erosion � � � � 2 � � D + � 2 + max � D − |∇ u ij | = min ξ u ij , 0 ξ u ij , 0 ξ = x , y Note: the same schemes are used for discretizing pressure forces in level set-based active contour models Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  53. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Euclidean intrinsic scale-space Generating PDE (Morel-Osher-Sethian-Gage-Hamilton) The Euclidean intrinsic scale-space is generated by the (parabolic) Euclidean intrinsic heat equation � ∇ u � u t = |∇ u | ∇ · |∇ u | ◮ Geometric interpretation: Image simplification is performed by evolving level sets according to the mean curvature motion x t = curv( u ) n This is the speed law of a membrane Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  54. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Euclidean intrinsic scale-space ◮ Mean curvature motion decreases | curv( u ) | 1 First, level sets are convexified Discontinuities are instantly smoothed out 2 Once convex, level sets are then contracted to a point which finally vanishes Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  55. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Gauge coordinates ◮ In global Cartesian coordinates, generating PDEs can be complex and does not highlight how image geometry is simplified ◮ Hence the idea of finding simpler expressions in a local coordinate system related to image geometry Relevant local frames should share the contrast- and isometry- invariance properties of scale operators These properties are verified by image level lines Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  56. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Gauge coordinates level n = − ∇ u lines |∇ u | t = ∇ ⊥ u stream y lines n |∇ u | u = cte O x t ◮ The local frame ( t , n ) induces a local coordinate system ( ξ, η ) on the image grid ξ ( η ) is an arclength along level (stream) lines ∂ ξ , ∂ η are Lie derivatives � = � ∂ ξ , ∂ η � t · ∇ , n · ∇ � Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  57. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Gauge coordinates ◮ 1 st -order local image derivatives u ξ = 0 u η = −|∇ u | Gauge property: Choosing a reference for u yields a simplified representation of ∇ u ◮ 2 nd -order local image derivatives u ξξ = |∇ u | − 2 � u xx u 2 � y − 2 u xy u x u y + u yy u 2 x u ξη = |∇ u | − 2 � u xx u x u y − u yy u x u y + u xy u 2 � y − u xy u 2 x u ηη = |∇ u | − 2 � u xx u 2 � x + 2 u xy u x u y + u yy u 2 y Level line curvature Stream line curvature curv( u ) = − u ξξ curv ⊥ ( u ) = − u ξη u η u η Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  58. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Euclidean intrinsic vs linear scale-space ◮ Expressing generating PDEs in gauge coordinates highlights how scale-space acts on image local geometry scale-space Cartesian coordinates gauge coordinates u t = ∆ u u t = u ξξ + u ηη linear � ∇ u � intrinsic u t = |∇ u | ∇ · u t = u ξξ |∇ u | Euclidean The isotropic heat equation has a diffusion component u ηη across image level sets, inducing inter-region smoothing (biais) The Euclidean intrinsic heat equation performs anisotropic diffusion solely along image level sets Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  59. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Affine intrinsic scale-space Generating PDE (Alvarez-Morel-Lions-Sapiro-Tannenbaum) There is a unique contrast- and affine-invariant scale-space, known as the affine intrinsic scale-space. Its generating PDE is the (parabolic) affine intrinsic heat equation � ∇ u � �� 1 3 u t = |∇ u | ∇ · |∇ u | ◮ Geometric interpretation: Image simplification is performed by evolving level sets according to the affine mean curvature motion � curv( u ) � 1 3 n x t = Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  60. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Euclidean/affine intrinsic scale-spaces ◮ Implementation The scale-space generator ∂ T u is discretized by substituting in its expression finite difference approximations of (D u , D 2 u ) ( u x ) ij = 1 2 ( u i +1 , j − u i − 1 , j ) ( u xx ) ij = u i +1 , j − 2 u ij + u i − 1 , j ( u xy ) ij = u i +1 , j +1 − u i − 1 , j +1 − u i +1 , j − 1 + u i − 1 , j − 1 To avoid singularities, mean curvature motion is replaced by (discrete) linear diffusion ( ∂ T u = ∆ u ) when |∇ u | ≪ 1 Explicit scheme � ∂ T u ( t ) � u ij ( t + δ t ) = u ij ( t ) + δ t ij Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  61. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Limitations of geometric scale-spaces ◮ Though better suited to content-adapted simplification than the linear models, geometric scale-spaces suffer from artifacts Level set curvature-driven PDEs delocate / convexify image structures and smooth out corners / junctions Image level sets (and more generally, all image structures) are processed similarly whatever their contrast ◮ Scale operators capable of processing image content selectively, by preserving well-contrasted level sets while filtering the others, would allow for improved representations Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  62. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Limitations of geometric scale-spaces Linear separable Gaussian Geometric Euclidean intrinsic Conservative Perona-Malik t 0 1 4 7 10 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  63. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Limitations of geometric scale-spaces Linear separable Gaussian Geometric Euclidean intrinsic Conservative Perona-Malik t 0 2 5 8 11 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  64. Foundations Generating PDE Linear scale-space Morphological scale-spaces Geometric scale-spaces Intrinsic scale-spaces Conservative scale-spaces Limitations Bibliography Limitations of geometric scale-spaces Linear separable Gaussian Geometric Euclidean intrinsic Conservative Perona-Malik t 0 2 5 8 11 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  65. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Outline Foundations 1 Linear scale-space 2 Geometric scale-spaces 3 Conservative scale-spaces 4 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  66. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Anisotropic diffusion Generating PDE (Perona-Malik) The (parabolic) variable-conduction heat equation � g ( |∇ u | ) ∇ u � u t = ∇ · generates an isometry-invariant scale-space for any given C 1 -continuous, positive, decreasing function g such that g (0) = 1 x → + ∞ g ( x ) = 0 lim 1 2 This PDE is known as anisotropic diffusion (it is in fact an isotropic inhomogeneous diffusion equation) Diffusion is governed by the conduction function g xg ( x ) is known as the flux function Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  67. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Anisotropic diffusion ◮ Generating PDE in gauge coordinates � u η g ( u η ) � ′ u ηη u t = g ( u η ) u ξξ + Weak diffusion across image level sets occurs for high-contrast x → + ∞ [ xg ( x ) ] ′ = 0 values, even though lim Edge blurring is avoided if diffusion along level sets dominates. This is ensured if the conduction function g verifies g ( x ) lim [ xg ( x ) ] ′ = 0 x → + ∞ Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  68. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Anisotropic diffusion ◮ Convex flux result in smoothing name g ( x ) xg ( x ) tanh x Green x 1 L 1 - L 2 √ 1+ x 2 1 Fair 1+ x 1 Total variation x 0 x Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  69. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Anisotropic diffusion ◮ Nonconvex flux result in joint smoothing / contrast enhancement xg (x) name g ( x ) 2 e − ( x K ) Perona-Malik 1 Lorentzian 2 1+ ( x K ) 1 � 2 � 2 Geman-McClure 1+ ( x K ) K x 0 � 1 − � x � 2 � 2 x ≤ K Tuckey K x > K 0 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  70. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Anisotropic diffusion ◮ Nonconvex flux result in joint smoothing / contrast enhancement The hyperparameter K acts as a contrast xg (x) threshold |∇ u | ≤ K Image is viewed as low-texture and smoothed K x 0 |∇ u | > K Image is viewed as salient edge and enhanced (the PDE behaves locally as an inverse heat equation) Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  71. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Anisotropic diffusion ◮ Influence of hyperparameter K K = 100 K = 400 t 2 5 8 11 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  72. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Anisotropic diffusion ◮ Influence of hyperparameter K K = 100 K = 400 t 2 5 8 11 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  73. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Properties of anisotropic diffusion ◮ Simplification: Anisotropic diffusion decreases image L p -norms, centered statistical moments and Shannon entropy ◮ Well-posedness: The variable-conduction heat equation is well- posed iff. the flux function is convex For nonconvex flux functions, inverse diffusion occurs when |∇ u | > K , generating local instability Joint image smoothing / contrast enhancement is ill-posed Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  74. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Well-posed anisotropic diffusion Generated PDE (Catté-Dibos-Whitaker-Pizer) The (parabolic) variable-conduction heat equation � g ( |∇ G σ ⋆ u | ) ∇ u � u t = ∇ · generates an isometry-invariant scale-space for any given σ > 0 and C 1 -continuous, positive, decreasing function g such that g (0) = 1 x → + ∞ g ( x ) = 0 lim 1 2 This PDE is well-posed Unconditional well-posedness is obtained by computing conduction from smooth contrast estimates This model is known as image selective smoothing Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  75. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Properties of anisotropic diffusion ◮ Conservation of mean luminance � � 1 1 u ( x , t ) d x = u ( x , 0) d x | Ω | | Ω | Ω Ω Variable-conduction diffusion scale-spaces are also known as conservative scale-spaces ◮ Trivial asymptotics: Anisotropic diffusion yields uniform images at the large scale limit � 1 t → + ∞ u ( x , t ) = lim u ( x , 0) d x | Ω | Ω Diffusion must be stopped before excessive loss of detail No optimal stopping criterion is currently available Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  76. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Biased anisotropic diffusion Generating PDE (Nordström) The (parabolic) variable-conduction heat equation � + λ ( u 0 − u ) � g ( |∇ u | ) ∇ u u t = ∇ · generates an isometry-invariant scale-space for any given λ > 0 and C 1 -continuous, positive, decreasing function g such that g (0) = 1 x → + ∞ g ( x ) = 0 lim 1 2 λ ( u 0 − u ) is a data link term, constraining filtered images u to remain similar to the original image u 0 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  77. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Biased anisotropic diffusion Variational formulation (Barlaud-Aubert) Biased anisotropic diffusion corresponds to solving a regularized denoising problem by iteratively minimizing the energy � � ϕ ( |∇ u | ) d x + λ ( u 0 − u ) 2 d x E ( u ) = 2 Ω Ω where ϕ is a 1 st -order discontinuity-preserving stabilizer Variational derivative � ϕ ′ ( |∇ u | ) � ∂ u E ( u ) = −∇ · ∇ u − λ ( u 0 − u ) |∇ u | Biased anisotropic diffusion arises as a gradient descent u t = − ∂ u E ( u ) with conduction defined as g ( x ) = ϕ ′ ( x ) x Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  78. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Biased anisotropic diffusion ◮ Implementation Finite difference discretization of the diffusion term |∇ u | is approximated by absolute lateral differences � � � � g ( |∇ u | ) ∇ u � � | D + � D + D − ∇ · ij ≈ g ξ u ij | ξ u ij ξ ξ = x , y Denoting ∆ n ∆ w ij u = u i − 1 , j − u ij ij u = u i , j − 1 − u ij ∆ s ∆ e ij u = u i +1 , j − u ij ij u = u i , j +1 − u ij this rewrites as � � g ( |∇ u | ) ∇ u � g ( | ∆ ξ ij u | ) ∆ ξ ∇ · ij ≈ ij u ξ = n , s , w , e Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  79. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Biased anisotropic diffusion ◮ Implementation (cont’d) Finite difference discretization of the diffusion term This corresponds to a convolution � g ( |∇ u | ) ∇ u � ∇ · ij ≈ K ( u ij ) ⋆ u ij with an image-based diffusion kernel K ( u )  � | ∆ n �  ij u | g  � | ∆ w � − � g ( | ∆ ξ � | ∆ e �    ij u | ij u | ) ij u | K ( u ij ) = g g   � | ∆ s � ij u | g Note: In the linear diffusion limit ( ϕ ( x ) = x 2 i.e. g ( x ) = 1), K ( u ) reduces to the 4-connected Laplacian kernel ∆ 4 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  80. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Biased anisotropic diffusion ◮ Implementation (cont’d) Finite difference discretization of the biaised diffusion term � ∂ T u � ij ≈ K ( u ij ) ⋆ u ij + λ ( u 0 − u ) ij Finite difference discretization of u t ( u t ) ij = u ij ( t + δ t ) − u ij ( t ) δ t Explicit scheme � ∂ T u ( t ) � u ij ( t + δ t ) = u ij ( t ) + δ t ij 1 ◮ Under the CFL condition δ t ≤ 4 , this scheme is stable and verifies a maximum principle Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  81. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Shock filters Generating PDE (Rudin-Osher) For any 2 nd -order diffusive (elliptic) operator L , the (hyperbolic) PDE � L ( u ) � u t = −|∇ u | sign is well-posed and yields piecewise C 0 images at the large scale limit L behaves as a 2 nd -order edge detector. Classical choices are L ( u ) = ( ∇ u ) T D 2 u ∇ u = u ηη L ( u ) = G σ ⋆ ∆ u Image level lines are pushed towards edges with unit speed � L ( u )( x ) � V ( x ) = sign Discontinuities are created as shocks along edges Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  82. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Shock filters ◮ Generalization A broad family of shock filters is derived by replacing the sign function by an arbitrary Lipschitz function F s.t. xF ( x ) > 0 � L ( u ) � u t = −|∇ u | F Given 0 < α ≤ 1, the well-posed (hyperbolic) PDE � � � � L ( u ) � 1 + |∇ u | 2 + (1 − α ) |∇ u | u t = − α F yields piecewise C 1 images at the large scale limit In both cases, the backward PDEs are also well-posed Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  83. Foundations Linear scale-space Anisotropic diffusion Geometric scale-spaces Biased anisotropic diffusion Conservative scale-spaces Shock filters Bibliography Conclusion ◮ Scale-space theory provides a well-established framework for describing images/shapes w.r.t. level of detail The linear scale-space is a universal visual front-end Nonlinear scale-spaces provide geometry-preserving models tailored to specific invariance constraints ◮ Scale-spaces enable hierarchical implementations of a variety of image/shape understanding problems Motion analysis Restoration/enhancement Feature extraction Matching Shape from X Segmentation Grouping/decomposition into parts . . . Nicolas Rougon IMA4509 | Scale-space & PDE filtering

  84. Foundations Linear scale-space Geometric scale-spaces Conservative scale-spaces Bibliography Bibliography T. Lindeberg Scale space theory in computer vision Kluwer Academic Publishers, 1994 L.M.J. Florack Image structure Kluwer Academic Publishers, 1997 B.M. ter Haar Romeny Geometry-driven diffusion in computer vision Kluwer Academic Publishers, 1994 Nicolas Rougon IMA4509 | Scale-space & PDE filtering

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend