rna das zaubermolek l
play

RNA Das Zaubermolekl Peter Schuster Institut fr Theoretische - PowerPoint PPT Presentation

RNA Das Zaubermolekl Peter Schuster Institut fr Theoretische Chemie und Molekulare Strukturbiologie der Universitt Wien Dies Academicus Leipzig, 02.12.2002 Replication: DNA 2 DNA + + Transcription: Food RNA Nucleotides


  1. RNA – Das Zaubermolekül Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien Dies Academicus Leipzig, 02.12.2002

  2. Replication: → DNA 2 DNA + + Transcription: Food RNA Nucleotides Amino Acids → Metabolism Lipids DNA Carbohydrates Small Molecules Waste Ribosom Protein mRNA → Translation: RNA Protein A conventional simplified sketch of cellular metabolism

  3. 5' - end N 1 O CH 2 O GCGGAU UUA GCUC AGUUGGGA GAGC CCAGA G CUGAAGA UCUGG AGGUC CUGUG UUCGAUC CACAG A AUUCGC ACCA 5'-e nd 3’-end N A U G C k = , , , OH O N 2 O P O CH 2 O Na � O O OH N 3 O P O CH 2 O Na � 3'-end O RNA O OH 5’-end N 4 O P O CH 2 O Na � 70 O O OH 60 3' - end O P O 10 Na � O 50 20 30 40 Definition of RNA structure

  4. Canonical or Watson- Crick base pairs : cytosine – guanine G � C uracil – adenine A = U W.Saenger, Principles of Nucleic Acid Structure, Springer, Berlin 1984

  5. The three-dimensional structure of a short double helical stack

  6. O N H O G=U N N O H N N H H N N H O H N � G C N H N N O N O H N N U=G N H O H N O H N N N H N H Canonical Watson-Crick base-pair Wobble base-pairs Wobble base pairs in RNA double-helical stacks

  7. RNA as adapter molecule RNA is the catalytic subunit in RNA as scaffold for supramolecular RNA as transmitter of genetic information supramolecular complexes complexes DNA transcription ... CUG ... ...AGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUC... leu GAC messenger- RNA genetic code translation protein ribosome RNA as working copy of genetic information ? ? ? ? ? RNA as catalyst RNA RNA is modified by epigenetic control RNA editing Alternative splicing of messenger RNA ribozyme RNA as regulator of gene expression RNA as carrier of genetic information The RNA world as a precursor of RNA viruses and retroviruses the current DNA + protein biology RNA as information carrier in evolution in vitro and evolutionary biotechnology Functions of RNA molecules gene silencing by small interfering RNAs

  8. Evolution of RNA molecules based on Q β phage D.R.Mills, R.L.Peterson, S.Spiegelman, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule . Proc.Natl.Acad.Sci.USA 58 (1967), 217-224 S.Spiegelman, An approach to the experimental analysis of precellular evolution . Quart.Rev.Biophys. 4 (1971), 213-253 C.K.Biebricher, Darwinian selection of self-replicating RNA molecules . Evolutionary Biology 16 (1983), 1-52 G.Bauer, H.Otten, J.S.McCaskill, Travelling waves of in vitro evolving RNA. Proc.Natl.Acad.Sci.USA 86 (1989), 7937-7941 C.K.Biebricher, W.C.Gardiner, Molecular evolution of RNA in vitro . Biophysical Chemistry 66 (1997), 179-192 G.Strunk, T.Ederhof, Machines for automated evolution experiments in vitro based on the serial transfer concept . Biophysical Chemistry 66 (1997), 193-202

  9. RNA sample Time 0 1 2 3 4 5 6 69 70 � Stock solution: Q RNA-replicase, ATP, CTP, GTP and UTP, buffer The serial transfer technique applied to RNA evolution in vitro

  10. Reproduction of the original figure of the β serial transfer experiment with Q RNA D.R.Mills, R,L,Peterson, S.Spiegelman, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule . Proc.Natl.Acad.Sci.USA 58 (1967), 217-224

  11. Decrease in mean fitness due to quasispecies formation The increase in RNA production rate during a serial transfer experiment

  12. No new principle will declare itself from below a heap of facts. Sir Peter Medawar, 1985

  13. 5' 3' Plus Strand G C C C G Synthesis 5' 3' Plus Strand G C C C G C G 3' Synthesis 5' 3' Plus Strand G C C C G Minus Strand C G G G C 5' 3' Complex Dissociation Complementary replication as the 3' 5' simplest copying mechanism of RNA Plus Strand G C C C G Complementarity is determined by Watson-Crick base pairs: + 5' 3' G � C and A = U Minus Strand C G G G C

  14. f 1 (A) + I 1 I 1 I 1 + f 2 (A) + I 2 I 2 I 2 + Φ = ( Φ ) dx / dt = x - x f x f i - i i i i i Φ = Σ ; Σ = 1 ; i,j f x x =1,2,...,n j j j j j i � i =1,2,...,n ; [I ] = x 0 ; i f i I i [A] = a = constant (A) + (A) + I i + + I i fm = max { ; j=1,2,...,n} fj � � � xm(t) 1 for t f m I m (A) + (A) + I m I m + f n I n (A) + (A) + I n I n + + Reproduction of organisms or replication of molecules as the basis of selection

  15. s = ( f 2 - f 1 ) / f 1 ; f 2 > f 1 ; x 1 (0) = 1 - 1/N ; x 2 (0) = 1/N 1 Fraction of advantageous variant 0.8 0.6 s = 0.1 s = 0.02 0.4 0.2 s = 0.01 0 0 200 600 800 1000 400 Time [Generations] Selection of advantageous mutants in populations of N = 10 000 individuals

  16. 5' 3' Plus Strand G C C C G 5' 3' GAA UCCCG AA GAA UCCCGUCCCG AA Plus Strand G C C C G Insertion C 3' G 5' 3' Minus Strand G G C G G C GAAUCCA GAAUCC CGA A 3' 5' Deletion Plus Strand G C C C G C Point Mutation Mutations in nucleic acids represent the mechanism of variation of genotypes .

  17. Theory of molecular evolution M.Eigen, Self-organization of matter and the evolution of biological macromolecules . Naturwissenschaften 58 (1971), 465-526 C.J.Thompson, J.L.McBride, On Eigen's theory of the self-organization of matter and the evolution of biological macromolecules . Math. Biosci . 21 (1974), 127-142 B.L.Jones, R.H.Enns, S.S.Rangnekar, On the theory of selection of coupled macromolecular systems. Bull.Math.Biol . 38 (1976), 15-28 M.Eigen, P.Schuster, The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle . Naturwissenschaften 58 (1977), 465-526 M.Eigen, P.Schuster, The hypercycle. A principle of natural self-organization. Part B: The abstract hypercycle . Naturwissenschaften 65 (1978), 7-41 M.Eigen, P.Schuster, The hypercycle. A principle of natural self-organization. Part C: The realistic hypercycle . Naturwissenschaften 65 (1978), 341-369 J.Swetina, P.Schuster, Self-replication with errors - A model for polynucleotide replication. Biophys.Chem. 16 (1982), 329-345 J.S.McCaskill, A localization threshold for macromolecular quasispecies from continuously distributed replication rates . J.Chem.Phys. 80 (1984), 5194-5202 M.Eigen, J.McCaskill, P.Schuster, The molecular quasispecies . Adv.Chem.Phys. 75 (1989), 149-263 C. Reidys, C.Forst, P.Schuster, Replication and mutation on neutral networks . Bull.Math.Biol. 63 (2001), 57-94

  18. I 1 I j + Σ Φ dx / dt = f Q ji x - x f j Q j1 i j j j i I j I 2 + Σ i Φ = Σ ; Σ = 1 ; f x x Q ij = 1 j j i j j � i =1,2,...,n ; f j Q j2 [Ii] = xi 0 ; I i I j + [A] = a = constant f j Q ji l -d(i,j) d(i,j) I j (A) + I j Q = (1- ) p p + I j ij f j Q jj p .......... Error rate per digit l ........... Chain length of the f j Q jn polynucleotide I j d(i,j) .... Hamming distance I n + between Ii and Ij Chemical kinetics of replication and mutation as parallel reactions

  19. Quasispecies Uniform distribution 0.00 0.05 0.10 Error rate p = 1-q Quasispecies as a function of the replication accuracy q

  20. Master sequence Mutant cloud n o i t a r t n e c n o C Sequence space The molecular quasispecies in sequence space

  21. In the case of non-zero mutation rates (p>0 or q<1) the Darwinian principle of optimization of mean fitness can be understood only as an optimization heuristic . It is valid only on part of the concentration simplex. There are other well defined areas were the mean fitness decreases monotonously or were it may show non- monotonous behavior. The volume of the part of the simplex where mean fitness is non-decreasing in the conventional sense decreases with inreasing mutation rate p. In systems with recombination a similar restriction holds for Fisher‘s „universal selection equation“. Its global validity is restricted to the one-gene (single locus) model.

  22. Theory of genotype – phenotype mapping P. Schuster, W.Fontana, P.F.Stadler, I.L.Hofacker, From sequences to shapes and back: A case study in RNA secondary structures . Proc.Roy.Soc.London B 255 (1994), 279-284 W.Grüner, R.Giegerich, D.Strothmann, C.Reidys, I.L.Hofacker, P.Schuster, Analysis of RNA sequence structure maps by exhaustive enumeration. I. Neutral networks . Mh.Chem. 127 (1996), 355-374 W.Grüner, R.Giegerich, D.Strothmann, C.Reidys, I.L.Hofacker, P.Schuster, Analysis of RNA sequence structure maps by exhaustive enumeration. II. Structure of neutral networks and shape space covering . Mh.Chem. 127 (1996), 375-389 C.M.Reidys, P.F.Stadler, P.Schuster, Generic properties of combinatory maps . Bull.Math.Biol. 59 (1997), 339-397 I.L.Hofacker, P. Schuster, P.F.Stadler, Combinatorics of RNA secondary structures . Discr.Appl.Math. 89 (1998), 177-207 C.M.Reidys, P.F.Stadler, Combinatory landscapes . SIAM Review 44 (2002), 3-54

  23. Genotype-phenotype relations are highly complex and only the most simple cases can be studied. One example is the folding of RNA sequences into RNA structures represented in course-grained form as secondary structures. The RNA genotype-phenotype relation is understood as a mapping from the space of RNA sequences into a space of RNA structures.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend