deep learning for multiscale molecular modeling
play

Deep Learning for Multiscale Molecular Modeling Linfeng Zhang - PowerPoint PPT Presentation

Deep Learning for Multiscale Molecular Modeling Linfeng Zhang Princeton University June 19 2019, MoD-PMI2019, NIFS Joint work with Han Wang , Roberto Car, Weinan E Linfeng Zhang (PU) DL for MMM June 2019 1 / 42 Outline Introduction 1 Deep


  1. Deep Learning for Multiscale Molecular Modeling Linfeng Zhang Princeton University June 19 2019, MoD-PMI2019, NIFS Joint work with Han Wang , Roberto Car, Weinan E Linfeng Zhang (PU) DL for MMM June 2019 1 / 42

  2. Outline Introduction 1 Deep Potential 2 Deep Potential Generator (DP-GEN) 3 Free energy and Reinforced Dynamics 4 Conclusions 5 Linfeng Zhang (PU) DL for MMM June 2019 2 / 42

  3. Outline Introduction 1 Deep Potential 2 Deep Potential Generator (DP-GEN) 3 Free energy and Reinforced Dynamics 4 Conclusions 5 Linfeng Zhang (PU) DL for MMM June 2019 3 / 42

  4. Where deep learning could help? d 0 , 0 d 1 , 0 d 2 , 0 x 0 d 0 , 1 d 1 , 1 F ( x ) d 2 , 1 x 1 d 0 , 2 d 1 , 2 d 2 , 2 d 0 , 3 d 1 , 3 L 0 L 1 L 2 L out x F ( x ) d 0 d 1 d 2 W p · d p − 1 + b p � d p = L p ( d p − 1 ) = φ � Composition of analytical and nonlinear functions; Approximator for High-D functions. Linfeng Zhang (PU) DL for MMM June 2019 4 / 42

  5. Multi-scale Molecular Modeling A few examples: ab initio molecular dynamics (MD): quantum mechanics (QM) to MD, potential energy surface (PES); Coarse-grained (CG) MD: atoms to CG “particles”, free energy surface (FES)/CG potential; enhanced sampling/phase transition: atoms to fewer collective variables (CVs), FES. Linfeng Zhang (PU) DL for MMM June 2019 5 / 42

  6. Accuracy v.s. efficiency dilemma PES as an example: E = E ( r 1 , ..., r i , ..., r N ) . First principle: accurate but very expensive. For example KS-DFT, ∼ 10 2 atoms: E = � Ψ 0 | H KS | Ψ 0 � , e Empirical potentials: fast but limited accuracy. For example Lennard-Jones potential E = 1 V ij = 4 ǫ [( σ ) 12 − ( σ � ) 6 ] . V ij , 2 r ij r ij i � = j Lennard-Jones, J. E. (1924), Proc. R. Soc. Lond. A, 106 (738): 463477 Linfeng Zhang (PU) DL for MMM June 2019 6 / 42

  7. Two important aspects Deep learning could help for a classical of problems in multi-scale molecular modeling. 1 � min l ( f w , f ) �D� w i ∈D deep learning model f w ; dataset D ; definition of l and optimization algorithm. Linfeng Zhang (PU) DL for MMM June 2019 7 / 42

  8. Outline Introduction 1 Deep Potential 2 Deep Potential Generator (DP-GEN) 3 Free energy and Reinforced Dynamics 4 Conclusions 5 Linfeng Zhang (PU) DL for MMM June 2019 8 / 42

  9. Requirement for a reliable PES model accuracy (e.g. uniform); efficiency (e.g. linear scaling); physical constraint (e.g. extensivity, symmetry); no human intervention/ end-to-end. Linfeng Zhang (PU) DL for MMM June 2019 9 / 42

  10. Typical construction � E = E i , E i = E s ( i ) ( r i , { r j } j ∈N ( i ) ) , N ( i ) = { j : r ij = | r ij | ≤ r c } i E i ( r i , { r j } j ∈N ( i ) ) represented by fully connected NNs with symmetrized inputs. Behler, J., Parrinello, M. (2007). Phys. Rev. Lett., 98(14), 146401. Linfeng Zhang (PU) DL for MMM June 2019 10 / 42

  11. Descriptors: Local coordinates atom j R e z ij z atom i e y ij e x y ij x ij or Han, et.al., CiCP, 23, 629 (2018). Zhang, et.al., PRL, 120, 143001 (2018) Linfeng Zhang (PU) DL for MMM June 2019 11 / 42

  12. Descriptors: a smooth descriptor by DNN Key: complete and adaptive. Translation and Rotation: ( R i ( R i ) T ) : Ω i jk = r ji · r ki , Permutation: ( ( G i 1 ) T R i ) : � j ∈N ( i ) g ( r ji ) r ji , Finally, we propose: D i = ( G i 1 ) T R i ( R i ) T G i 2 . Zhang, et.al., NeurIPS 2018 Linfeng Zhang (PU) DL for MMM June 2019 12 / 42

  13. Various systems with the same principle Zhang, et.al., NeurIPS 2018 Linfeng Zhang (PU) DL for MMM June 2019 13 / 42

  14. Different thermodynamic conditions The path integral water structures (ambient cond.) 3.5 0.8 DeePMD O−O DeePMD DeePMD O−H 0.7 DFT 3.0 DeePMD H−H 0.6 DFT O−O 2.5 DFT O−H 0.5 RDF g(r) DFT H−H 2.0 P( ψ ) 0.4 1.5 0.3 1.0 0.2 0.5 0.1 0.0 0.0 0 1 2 3 4 5 6 0.5 1 1.5 2 2.5 3 r [Å] ψ [rad] Ice in different thermodynamic states 6.0 6.0 6.0 DeePMD O−O DeePMD O−O DeePMD O−O DeePMD O−H DeePMD O−H DeePMD O−H 5.0 5.0 5.0 DeePMD H−H DeePMD H−H DeePMD H−H DFT O−O DFT O−O DFT O−O 4.0 DFT O−H 4.0 DFT O−H 4.0 DFT O−H RDF g(r) DFT H−H RDF g(r) DFT H−H RDF g(r) DFT H−H 3.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 0.0 0.0 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 r [Å] r [Å] r [Å] PI-ice, P=1.0 bar, T=273 K; ice P=1.0 bar,T=330 K; ice P=2.13 bar,T=238 K; Zhang et.al. Phys.Rev.Lett 120 143001 (2018) Linfeng Zhang (PU) DL for MMM June 2019 14 / 42

  15. Extension to coarse-graining 3.0 AIMD DeePMD 2.0 DeePCG k DeePCG (large sys.) g(r) 1.0 0.0 AIMD (r) 0.05 0.00 g(r) - g -0.05 -0.10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 z r [nm] r c = 0.27 nm r c = 0.37 nm 1.6 0.8 x 1.4 AIMD 0.7 DeePMD 1.2 0.6 DeePCG 1.0 0.5 j P( θ ) 0.8 0.4 i(a) 0.6 0.3 i 0.4 0.2 0.2 0.1 0.0 0.0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 r c = 0.456 nm r c = 0.60 nm y 0.7 0.6 0.6 0.5 i(b) 0.5 0.4 P( θ ) 0.4 0.3 0.3 0.2 0.2 0.1 0.1 Zhang et.al. J. Chem. Phys., 149, 034101 (2018) 0.0 0.0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 θ / π θ / π Linfeng Zhang (PU) DL for MMM June 2019 15 / 42

  16. Extension to electronic information Linfeng Zhang (PU) DL for MMM June 2019 16 / 42

  17. Extension to electronic information Linfeng Zhang (PU) DL for MMM June 2019 17 / 42

  18. Extension to nonadiabatic excited state dynamics Chen, Wen-Kai, et al. J. P. C. Lett. 9.23 (2018): 6702-6708. Linfeng Zhang (PU) DL for MMM June 2019 18 / 42

  19. Combined with metadynamics L. Bonati and M. Parrinello, Phys. Rev. Lett. 121, 265701 Linfeng Zhang (PU) DL for MMM June 2019 19 / 42

  20. Extension to T-dependent free energy Linfeng Zhang (PU) DL for MMM June 2019 20 / 42 (in preparation)

  21. Extension to T-dependent free energy Left: Radial distribution functions (RDFs); Right: Rankine-Hugoniot curve. (a) (b) 3 , 11 eV 4.5 g/cm 3 , 2 eV 6.0 g/cm 1 1 g (r) 10 4 AIMD N=32 DPMD N=32 FPMD DPMD N=256 DPMD 0 0 10 3 Cauble 0 1 2 3 4 0 1 2 3 4 Pressure (Mbar) Nellis RaganIII (c) (d) 3 , 1000 eV 8.1 g/cm 3 , 200 eV 7.5 g/cm 10 2 1 1 g(r) 1 10 0 0 0 10 0 1 2 3 0 1 2 3 4 3 4 5 6 7 8 r (Å) r (Å) 3 ) Density (g/cm (in preparation) Linfeng Zhang (PU) DL for MMM June 2019 21 / 42

  22. Deep Potential: MD scalability 10 5 g 10 4 DFT n CPU core time per step [s] i l a c S 10 3 c i b u 10 2 C Linear Scaling 10 1 DeePMD 10 0 10 -1 DeePMD DFT: PBE0+TS 10 -2 10 1 10 2 10 3 10 4 10 5 10 6 Number of molecules Linfeng Zhang (PU) DL for MMM June 2019 22 / 42

  23. Open source software DeePMD-kit TensorFlow: efficient network operators LAMMPS, i-PI; MPI/GPU support. Free download from https://github.com/deepmodeling/deepmd-kit Comp.Phys.Comm., 0010-4655 (2018). Linfeng Zhang (PU) DL for MMM June 2019 23 / 42

  24. Outline Introduction 1 Deep Potential 2 Deep Potential Generator (DP-GEN) 3 Free energy and Reinforced Dynamics 4 Conclusions 5 Linfeng Zhang (PU) DL for MMM June 2019 24 / 42

  25. Two important aspects, revisited 1 � min l ( f w , f ) �D� w i ∈D deep learning model f w ; dataset D ; definition of l and optimization algorithm. Linfeng Zhang (PU) DL for MMM June 2019 25 / 42

  26. Active learning: the DP-GEN scheme Training/Fitting : model/representation. Exploration : sampler and error indicator; DPMD and model deviation � �� f i − � f i �� 2 � ǫ = max i Labeling : ab initio calculator. Example: Al-Mg alloy 0.0044 % explored confs. are labeled Zhang et.al. Phys. Rev. Mat. 3, 023804 Linfeng Zhang (PU) DL for MMM June 2019 26 / 42

  27. DP-GEN: test of Al 3.5 1.2 3.0 1.0 2.5 0.8 Surface formation energy by DP/MEAM [J/m 2 ] 1.2 2.0 0.6 1.1 4 5 6 7 1.5 1 1.0 0.9 Exp. 943K 0.5 DP 943K MEAM 943K 0.8 0.0 2 3 4 5 6 7 8 9 10 11 12 13 14 0.7 r [Å] DP: FCC Al 0.6 DP: HCP Mg 12 MEAM: FCC Al EXP 0.5 10 DP MEAM: HCP Mg MEAM ν (THz) 8 0.4 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 6 Surface formation energy by DFT [J/m 2 ] 4 2 0 Γ X K Γ L q Linfeng Zhang (PU) DL for MMM June 2019 27 / 42

  28. DP-GEN: tests based on Materials Project Linfeng Zhang (PU) DL for MMM June 2019 28 / 42

  29. DP-GEN: tests based on Materials Project Linfeng Zhang (PU) DL for MMM June 2019 29 / 42

  30. Irradiation damage simulation Linfeng Zhang (PU) DL for MMM June 2019 30 / 42

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend