ripser
play

Ripser Efficient Computation of VietorisRips Persistence Barcodes U - PowerPoint PPT Presentation

Ripser Efficient Computation of VietorisRips Persistence Barcodes U lri c h Bau er TUM May 2, 2017 S pe c i a l Ha usdorff P rogr a m Applied a nd C omp u t a tion a l A lge b r a i c T opolog y Ha usdorff R ese a r c h I nstitute for Ma them a


  1. Ripser Efficient Computation of Vietoris–Rips Persistence Barcodes U lri c h Bau er TUM May 2, 2017 S pe c i a l Ha usdorff P rogr a m Applied a nd C omp u t a tion a l A lge b r a i c T opolog y Ha usdorff R ese a r c h I nstitute for Ma them a ti c s, B onn http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 1 / 17

  2. Vietoris–Rips persistence

  3. Vietoris–Rips filtr a tions C onsider a finite metri c sp ac e ( X , d ) . T he Vietoris–Rips c omple x is the simpli c i a l c omple x Rips t ( X ) = { S ⊆ X ∣ diam S ≤ t } • 1 -skeleton: a ll edges w ith p a ir w ise dist a n c e ≤ t • a ll possi b le higher simpli c es (fl a g c omple x ) http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 2 / 17

  4. Vietoris–Rips filtr a tions C onsider a finite metri c sp ac e ( X , d ) . T he Vietoris–Rips c omple x is the simpli c i a l c omple x Rips t ( X ) = { S ⊆ X ∣ diam S ≤ t } • 1 -skeleton: a ll edges w ith p a ir w ise dist a n c e ≤ t • a ll possi b le higher simpli c es (fl a g c omple x ) G o a l: • c omp u te persisten c e ba r c odes for H d ( Rips t ( X )) (in dimensions 0 ≤ d ≤ k ) http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 2 / 17

  5. Demo: Ripser Exa mple d a t a set: • 192 points on S 2 • persistent homology ba r c odes up to dimension 2 • over 56 mio. simpli c es in 3 -skeleton http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 3 / 17

  6. Demo: Ripser Exa mple d a t a set: • 192 points on S 2 • persistent homology ba r c odes up to dimension 2 • over 56 mio. simpli c es in 3-skeleton C omp a rison with other softw a re: • j a v a plex: 3200 se c onds , 1 2 GB • D ion y s u s: 5 33 se c onds, 3 .4 GB • GUDHI : 75 se c onds, 2 .9 GB • DIPHA : 5 0 se c onds, 6 GB • E irene: 1 2 se c onds, 1.5 GB http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 3 / 17

  7. Demo: Ripser Exa mple d a t a set: • 192 points on S 2 • persistent homology ba r c odes up to dimension 2 • over 56 mio. simpli c es in 3-skeleton C omp a rison with other softw a re: • j a v a plex: 3200 se c onds , 1 2 GB • D ion y s u s: 5 33 se c onds, 3 .4 GB • GUDHI : 75 se c onds, 2 .9 GB • DIPHA : 5 0 se c onds, 6 GB • E irene: 1 2 se c onds, 1.5 GB R ipser: 1. 2 se c onds, 15 2 MB http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 3 / 17

  8. Ripser A software for computing Vietoris–Rips persistence barcodes • about 1 000 lines of C ++ c ode , no e x tern a l dependen c ies • s u pport for • c oeffi c ients in a prime field F p • sp a rse dist a n c e m a tri c es for dist a n c e threshold • open so u r c e ( http://ripser.org ) • rele a sed in J u l y 20 16 • online v ersion ( http://live.ripser.org ) • l a u n c hed in A u g u st 20 16 • most effi c ient soft w a re for V ietoris– R ips persisten c e • c omp u tes H 2 ba r c ode for 50000 r a ndom points on a tor u s in 1 3 6 se c onds / 9 GB ( u sing distance thr eshold) • 2016 ATMCS B est N ew S oftw a re A w a rd (jointly with RIVET ) http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 4 / 17

  9. Design goa ls G o a ls for pre v io u s proje c ts: • PHAT [B , K er b er, R einingh au s, Wa gner 20 1 3 ] : f a st persisten c e c omp u t a tion (m a tri x red u c tion onl y ) • DIPHA [B , K er b er, R einingh a u s 20 14 ] : distri b u ted persisten c e c omp u t a tion http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 5 / 17

  10. Design goa ls G o a ls for pre v io u s proje c ts: • PHAT [B , K er b er, R einingh au s, Wa gner 20 1 3 ] : f a st persisten c e c omp u t a tion (m a tri x red u c tion onl y ) • DIPHA [B , K er b er, R einingh a u s 20 14 ] : distri b u ted persisten c e c omp u t a tion G o a ls for R ipser: • U se a s little memor y a s possi b le • B e re a son ab le ab o u t c omp u t a tion time http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 5 / 17

  11. The four specia l ingredients T he impro v ed perform a n c e is ba sed on 4 insights: • C le a ring inessenti a l c ol u mns [C hen, K er b er 20 11 ] • C omp u ting c ohomolog y [ de S il v a et a l. 20 11 ] • I mpli c it m a tri x red u c tion • A pp a rent a nd emergent p a irs http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 6 / 17

  12. The four specia l ingredients T he impro v ed perform a n c e is ba sed on 4 insights: • C le a ring inessenti a l c ol u mns [C hen, K er b er 20 11 ] • C omp u ting c ohomolog y [ de S il v a et a l. 20 11 ] • I mpli c it m a tri x red u c tion • A pp a rent a nd emergent p a irs L essons from PHAT : • C le a ring a nd c ohomolog y y ield c onsider ab le speed u p, • b u t onl y w hen both a re u sed in c onj u c tion! http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 6 / 17

  13. Matrix reduction

  14. Matrix reduction a lgorithm S etting: • finite metri c sp ac e X , n points • persistent homolog y H d ( Rips t ( X ) ; F 2 ) in dimensions d ≤ k N ot a tion: • D : b o u nd a r y m a tri x of filtr a tion • R i : i th c ol u mn of R http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 7 / 17

  15. Matrix reduction a lgorithm S etting: • finite metri c sp ac e X , n points • persistent homolog y H d ( Rips t ( X ) ; F 2 ) in dimensions d ≤ k N ot a tion: • D : b o u nd a r y m a tri x of filtr a tion • R i : i th c ol u mn of R A lgorithm: • R = D , V = I • w hile ∃ i < j w ith pivot R i = pivot R j • a dd R i to R j , a dd V i to V j http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 7 / 17

  16. Matrix reduction a lgorithm S etting: • finite metri c sp ac e X , n points • persistent homolog y H d ( Rips t ( X ) ; F 2 ) in dimensions d ≤ k N ot a tion: • D : b o u nd a r y m a tri x of filtr a tion • R i : i th c ol u mn of R A lgorithm: • R = D , V = I • w hile ∃ i < j w ith pivot R i = pivot R j • a dd R i to R j , a dd V i to V j R es u lt: • R = D ⋅ V is red uc ed ( u niq u e pi v ots) • V is f u ll r a nk u pper tri a ng u l a r http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 7 / 17

  17. Compatib le ba sis cyc les F or a red uc ed b o u nd a r y m a tri x R = D ⋅ V , ca ll P = { i ∶ R i = 0 } positive indi c es, N = { j ∶ R j ≠ 0 } negative indi c es, E = P ∖ pivots R essentia l indi c es . T hen http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 8 / 17

  18. Compatib le ba sis cyc les F or a red uc ed b o u nd a r y m a tri x R = D ⋅ V , ca ll P = { i ∶ R i = 0 } positive indi c es, N = { j ∶ R j ≠ 0 } negative indi c es, E = P ∖ pivots R essentia l indi c es . T hen ̃ Σ Z = { V i ∣ i ∈ P } is a ba sis of Z ∗ , http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 8 / 17

  19. Compatib le ba sis cyc les F or a red uc ed b o u nd a r y m a tri x R = D ⋅ V , ca ll P = { i ∶ R i = 0 } positive indi c es, N = { j ∶ R j ≠ 0 } negative indi c es, E = P ∖ pivots R essentia l indi c es . T hen ̃ Σ Z = { V i ∣ i ∈ P } is a ba sis of Z ∗ , Σ B = { R j ∣ j ∈ N } is a ba sis of B ∗ , http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 8 / 17

  20. Compatib le ba sis cyc les F or a red uc ed b o u nd a r y m a tri x R = D ⋅ V , ca ll P = { i ∶ R i = 0 } positive indi c es, N = { j ∶ R j ≠ 0 } negative indi c es, E = P ∖ pivots R essentia l indi c es . T hen ̃ Σ Z = { V i ∣ i ∈ P } is a ba sis of Z ∗ , Σ B = { R j ∣ j ∈ N } is a ba sis of B ∗ , Σ Z = Σ B ∪ { V i ∣ i ∈ E } is a nother ba sis of Z ∗ . http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 8 / 17

  21. Compatib le ba sis cyc les F or a red uc ed b o u nd a r y m a tri x R = D ⋅ V , ca ll P = { i ∶ R i = 0 } positive indi c es, N = { j ∶ R j ≠ 0 } negative indi c es, E = P ∖ pivots R essentia l indi c es . T hen ̃ Σ Z = { V i ∣ i ∈ P } is a ba sis of Z ∗ , Σ B = { R j ∣ j ∈ N } is a ba sis of B ∗ , Σ Z = Σ B ∪ { V i ∣ i ∈ E } is a nother ba sis of Z ∗ . P ersistent homolog y is gener a ted by the ba sis cyc les Σ Z . http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 8 / 17

  22. Compatib le ba sis cyc les F or a red uc ed b o u nd a r y m a tri x R = D ⋅ V , ca ll P = { i ∶ R i = 0 } positive indi c es, N = { j ∶ R j ≠ 0 } negative indi c es, E = P ∖ pivots R essentia l indi c es . T hen ̃ Σ Z = { V i ∣ i ∈ P } is a ba sis of Z ∗ , Σ B = { R j ∣ j ∈ N } is a ba sis of B ∗ , Σ Z = Σ B ∪ { V i ∣ i ∈ E } is a nother ba sis of Z ∗ . P ersistent homolog y is gener a ted by the ba sis cyc les Σ Z . • P ersisten c e inter va ls: {[ i , j ) ∣ i = pivot R j } ∪ {[ i , ∞ ) ∣ i ∈ E } • C ol u mns w ith non-essenti a l positi v e indi c es ne v er u sed! http: //u lri c h- bau er.org /ripser-ta lk- b onn.pdf 8 / 17

  23. C le a ring

  24. C le a ring non-essenti a l positi v e c ol u mns I de a [C hen, K er b er 20 11 ] : • D on’t red u c e a t non-essenti a l positi v e indi c es • R ed u c e b o u nd a r y m a tri c es of ∂ d ∶ C d → C d − 1 in de c re a sing dimension d = k + 1 , . . . , 1 • W hene v er i = pivot R j (in m a tri x for ∂ d ) • S et R i to 0 (in m a tri x for ∂ d − 1 ) http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 9 / 17

  25. C le a ring non-essenti a l positi v e c ol u mns I de a [C hen, K er b er 20 11 ] : • D on’t red u c e a t non-essenti a l positi v e indi c es • R ed u c e b o u nd a r y m a tri c es of ∂ d ∶ C d → C d − 1 in de c re a sing dimension d = k + 1 , . . . , 1 • W hene v er i = pivot R j (in m a tri x for ∂ d ) • S et R i to 0 (in m a tri x for ∂ d − 1 ) • S et V i to R j http: // ulri c h- ba uer.org /ripser-ta lk- b onn.pdf 9 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend