riemann liouville fractional calculus of coalescence
play

Riemann-Liouville Fractional Calculus of Coalescence Hidden-variable - PowerPoint PPT Presentation

Riemann-Liouville Fractional Calculus of Coalescence Hidden-variable Fractal Interpolation Functions Srijanani Anurag Prasad Department of Applied Sciences, The NorthCap University, Gurgaon 6 th Cornell Conference on Analysis, Probability, and


  1. Riemann-Liouville Fractional Calculus of Coalescence Hidden-variable Fractal Interpolation Functions Srijanani Anurag Prasad Department of Applied Sciences, The NorthCap University, Gurgaon 6 th Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals June 13-17, 2017 S.A.Prasad (NCU) FC June 13-17, 2017 1 / 31

  2. Outline 1 Introduction 2 Riemann-Liouville fractional integral 3 Riemann-Liouville fractional derivative S.A.Prasad (NCU) FC June 13-17, 2017 2 / 31

  3. Outline 1 Introduction 2 Riemann-Liouville fractional integral 3 Riemann-Liouville fractional derivative S.A.Prasad (NCU) FC June 13-17, 2017 3 / 31

  4. Fractal Interpolation Function (FIF) Fractal Interpolation Function (FIF) : [Barnsley M.F., 1986] Similarities of FIF and traditional methods ∗ Geometrical Character - can be plotted on graph ∗ Represented by formulas Difference between FIF and traditional methods ∗ Fractal Character S.A.Prasad (NCU) FC June 13-17, 2017 4 / 31

  5. Coalescence Hidden-variable Interpolation Functions For simulating curves that exhibit self-affine and non-self-affine nature simultaneously, Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) was introduced by [Chand A.K.B. and Kapoor G.P ., 2007]. 120 180 160 100 140 80 120 100 60 80 40 60 40 20 20 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 S.A.Prasad (NCU) FC June 13-17, 2017 5 / 31

  6. Construction of a CHFIF Given data { ( x k , y k ) ∈ R 2 : k = 0 , 1 , . . . , N } Generalized data { ( x k , y k , z k ) ∈ R 3 : k = 0 , 1 , . . . , N } [ x 0 , x N ] = I , [ x k − 1 , x k ] = I k , k = 1 , 2 , . . . , N L k : I → I k L k ( x 0 ) = a k x + b k = x k − x k − 1 ( x − x 0 ) + x k − 1 (1) x N − x 0 S.A.Prasad (NCU) FC June 13-17, 2017 6 / 31

  7. Construction of a CHFIF F k : I × R 2 → R 2 F k ( x , y , z ) = α k y + β k z + p k ( x ) , γ k z + q k ( x ) � � (2) | α k | < 1 , | γ k | < 1 , | β k | + | γ k | < 1 F k ( x 0 , y 0 , z 0 ) = ( y k − 1 , z k − 1 ) F k ( x N , y N , Z N ) = ( y k , z k ) ω k : I × R 2 → I × R 2 ω k ( x , y , z ) = ( L k ( x ) , F k ( x , y , z )) , k = 1 , 2 , . . . N S.A.Prasad (NCU) FC June 13-17, 2017 7 / 31

  8. Construction of a CHFIF Theorem ( [Chand A.K.B. and Kapoor G.P ., 2007]) (1) { I × R 2 ; ω k , k = 1 , 2 , . . . , N } is a hyperbolic IFS with respect to a metric equivalent to Euclidean metric on R 3 . (2) The attractor G ⊆ R 3 such that G = � N k = 1 ω k ( G ) of the above IFS is graph of a continuous function f : I → R 2 such that f ( x k ) = ( y k , z k ) for k = 0 , 1 , . . . , N i.e. G = { ( x , f ( x )) : x ∈ I and f ( x ) = ( y ( x ) , z ( x )) } . S.A.Prasad (NCU) FC June 13-17, 2017 8 / 31

  9. Construction of CHFIF Definition The Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) for the given interpolation data { ( x k , y k ) : k = 0 , 1 , . . . , N } is defined as the continuous function f 1 : I → R , where f 1 is the first component of the continuous function f = ( f 1 , f 2 ) , graph of which is attractor of the hyperbolic IFS. f 2 - AFIF (Self-Affine Fractal Interpolation Function) y k = z k and α k + β k = γ k for all k , f 1 = f 2 is FIF S.A.Prasad (NCU) FC June 13-17, 2017 9 / 31

  10. Construction of CHFIF CHFIF : if x k − 1 ≤ x ≤ x k then f 1 ( x ) = α k f 1 ( L − 1 k ( x )) + β k f 2 ( L − 1 k ( x )) + p k ( L − 1 k ( x )) FIF : if x k − 1 ≤ x ≤ x k then f 2 ( x ) = γ k f 2 ( L − 1 k ( x )) + q k ( L − 1 k ( x )) S.A.Prasad (NCU) FC June 13-17, 2017 10 / 31

  11. Outline 1 Introduction 2 Riemann-Liouville fractional integral 3 Riemann-Liouville fractional derivative S.A.Prasad (NCU) FC June 13-17, 2017 11 / 31

  12. Riemann-Liouville fractional integral Definition Let −∞ < a < x < b < ∞ . The Riemann-Liouville fractional integral of order ν > 0 with lower limit a is defined for locally integrable functions f : [ a , b ] → R as x 1 � ( x − t ) ν − 1 f ( t ) dt I ν a + f ( x ) = (3) Γ( ν ) a for x > a . S.A.Prasad (NCU) FC June 13-17, 2017 12 / 31

  13. Riemann-Liouville fractional integral Given data { ( x k , y k ) ∈ R 2 : k = 0 , 1 , . . . , N } Generalized data { ( x k , y k , z k ) ∈ R 3 : k = 0 , 1 , . . . , N } x k − 1 1 � ( L k ( x ) − t ) ν − 1 f 1 ( t ) dt p ν k ( x ) = a ν k I ν x 0 + p k ( x ) + (4) Γ( ν ) x 0 and x k − 1 1 � ( L k ( x ) − t ) ν − 1 f 2 ( t ) dt . q ν k ( x ) = a ν k I ν x 0 + q k ( x ) + (5) Γ( ν ) x 0 S.A.Prasad (NCU) FC June 13-17, 2017 13 / 31

  14. Riemann-Liouville fractional integral F ν k ( x , y , z ) = F ν k , 1 ( x , y , z ) , F ν k , 2 ( x , z ) � � a ν k α k y + a ν k β k z + p ν k ( x ) , a ν k γ k z + q ν k ( x ) � � = (6) Define ω ν k ( x , y , z ) = ( L k ( x ) , F ν k ( x , y , z )) ; (7) 0 = 0 = z ν y ν 0 , q ν N ( x N ) z ν N = , 1 − a ν N γ N a ν p ν N ( x N ) N β N y ν z ν N = N + , 1 − a ν 1 − a ν N α N N α N z ν k = a ν k γ k z ν N + q ν k ( x N ) = q ν k + 1 ( x 0 ) k + 1 ( x 0 ) , k = 1 , 2 , . . . , N − 1 . y ν k = a ν k α k y ν N + a ν k β k z ν N + p ν k ( x N ) = p ν and (8) S.A.Prasad (NCU) FC June 13-17, 2017 14 / 31

  15. Riemann-Liouville fractional integral of FIF Proposition Let f 2 be a FIF passing through the interpolation data given by { ( x k , z k ) ∈ R 2 : k = 0 , 1 , . . . , N } . Then, Riemann-Liouville fractional integral of a FIF of order ν is also a FIF passing through the data k ) ∈ R 2 : k = 0 , 1 , . . . , N } , where z ν { ( x k , z ν k are given by (8) . S.A.Prasad (NCU) FC June 13-17, 2017 15 / 31

  16. Riemann-Liouville fractional integral of FIF Theorem ( [S.A.P, 2017]) Let f 1 be the CHFIF passing through the interpolation data given by { ( x k , y k ) ∈ R 2 : k = 0 , 1 , . . . , N } and f 2 be the corresponding FIF passing through the data { ( x k , z k ) ∈ R 2 : k = 0 , 1 , . . . , N } . Then, Riemann-Liouville fractional integral of a CHFIF of order ν given by (3) is also a CHFIF passing through the data k ) ∈ R 2 : k = 0 , 1 , . . . , N } , where y ν { ( x k , y ν k are given by (8) . S.A.Prasad (NCU) FC June 13-17, 2017 16 / 31

  17. Riemann-Liouville fractional integral of CHFIF Sketch of Proof: Let x such that x k − 1 < x < x k for some k ∈ { 1 , 2 , . . . , N } . Then, x 1 � ( x − t ) ν − 1 f 1 ( t ) dt I ν x 0 + f 1 ( x ) = Γ( ν ) x 0  x k − 1  x 1   � ( x − t ) ν − 1 f 1 ( t ) dt + � ( x − t ) ν − 1 f 1 ( t ) dt   = Γ( ν )   x 0 x k − 1   S.A.Prasad (NCU) FC June 13-17, 2017 17 / 31

  18. Riemann-Liouville fractional integral of CHFIF x k − 1  1 � ( x − t ) ν − 1 f 1 ( t ) dt  I ν x 0 + f 1 ( x ) = Γ( ν )  x 0 L − 1 ( x )  k  � k ( x ) − t ) ν − 1 f 1 ( L k ( t )) dt ( L − 1  + a ν k  x 0  x 0 + f 1 ( L − 1 x 0 + f 2 ( L − 1 = a ν k α k I ν k ( x )) + a ν k β k I ν k ( x )) x k − 1   1 � ( x − t ) ν − 1 f 1 ( t ) dt x 0 + p k ( L − 1   + a ν k I ν k ( x )) + Γ( ν )   x 0 S.A.Prasad (NCU) FC June 13-17, 2017 18 / 31

  19. Outline 1 Introduction 2 Riemann-Liouville fractional integral 3 Riemann-Liouville fractional derivative S.A.Prasad (NCU) FC June 13-17, 2017 19 / 31

  20. Riemann-Liouville fractional derivative Definition Let −∞ < a < x < b < ∞ , 0 < ν , f ∈ L 1 ([ a , b ]) and I n − ν f ∈ W 1 , 1 , where n is the smallest integer greater than ν . The Riemann-Liouville fractional derivative of order ν with lower limit a is defined as a + f )( x ) = d n dx n ( I n − ν ( D ν f )( x ) a + a + f )( x ) = f ( x ) when ν = 0 . and ( D ν S.A.Prasad (NCU) FC June 13-17, 2017 20 / 31

  21. Riemann-Liouville fractional derivative of FIF x k − 1   a − n d n � f 2 ( t )( L k ( x ) − t ) n − ν − 1 dt q d ν k k ( x ) = a − ν k D ν q k ( x ) +  (9) dx n Γ( n − ν )  x 0 and x k − 1   a − n d n � k D ν p k ( x ) + f 1 ( t )( L k ( x ) − t ) n − ν − 1 dt p d ν k k ( x ) = a − ν  . dx n Γ( n − ν )  x 0 (10) S.A.Prasad (NCU) FC June 13-17, 2017 21 / 31

  22. Riemann-Liouville fractional derivative of FIF Proposition Let f 2 be a FIF passing through the interpolation data { ( x k , z k ) ∈ R 2 : k = 0 , 1 , . . . , N } and | γ k | < a ν k for some fixed ν > 0 . Then Riemann-Liouville fractional derivative of a FIF of order ν is also a FIF provided (9) is satisfied. S.A.Prasad (NCU) FC June 13-17, 2017 22 / 31

  23. Riemann-Liouville fractional derivative of CHFIF Theorem ( [S.A.P, 2017]) Let f 1 be the CHFIF passing through the interpolation data given by { ( x k , y k ) ∈ R 2 : k = 0 , 1 , . . . , N } and f 2 be the corresponding FIF passing through the data { ( x k , z k ) ∈ R 2 : k = 0 , 1 , . . . , N } . For a fixed ν > 0 , if the free variables and constrained variables are such that | α k | < a ν k , | γ k | < a ν k and | β k | + | γ k | < a ν k then Riemann-Liouville fractional derivative of a CHFIF of order ν is also a CHFIF provided (9) and (10) are satisfied. S.A.Prasad (NCU) FC June 13-17, 2017 23 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend