math 12002 calculus i 4 2 riemann sum examples
play

MATH 12002 - CALCULUS I 4.2: Riemann Sum Examples Professor Donald - PowerPoint PPT Presentation

MATH 12002 - CALCULUS I 4.2: Riemann Sum Examples Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 7 Riemann Sums Definition Let y = f ( x ) be a function defined on


  1. MATH 12002 - CALCULUS I § 4.2: Riemann Sum Examples Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 7

  2. Riemann Sums Definition Let y = f ( x ) be a function defined on an interval [ a , b ]. Let n be a positive integer. Break the interval [ a , b ] into n equal subintervals with endpoints a = x 0 < x 1 < x 2 < · · · < x n − 1 < x n = b , so that each subinterval has length ∆ x = b − a n . For each i = 1 , . . . , n , choose a point x ∗ i in the i th subinterval [ x i − 1 , x i ]. The n th Riemann Sum for f on [ a , b ] with this choice of sample points is S n = f ( x ∗ 1 )∆ x + f ( x ∗ 2 )∆ x + · · · + f ( x ∗ n )∆ x . D.L. White (Kent State University) 2 / 7

  3. Riemann Sums The n th right Riemann sum R n is obtained by letting x ∗ i = x i , the right endpoint of the i th subinterval [ x i − 1 , x i ]: R n = f ( x 1 )∆ x + f ( x 2 )∆ x + · · · + f ( x n )∆ x . The n th left Riemann sum L n is obtained by letting x ∗ i = x i − 1 , the left endpoint of the i th subinterval [ x i − 1 , x i ]: L n = f ( x 0 )∆ x + f ( x 1 )∆ x + · · · + f ( x n − 1 )∆ x . D.L. White (Kent State University) 3 / 7

  4. Example Example Compute the sixth left Riemann sum L 6 and the sixth right Riemann sum R 6 for the function f ( x ) = x 3 − 5 on the interval [0 , 3] . D.L. White (Kent State University) 4 / 7

  5. Example In the notation of the definition, n = 6, a = 0, b = 3, so ∆ x = 3 − 0 = 1 2 . 6 The partition of our interval [0 , 3] is 1 3 5 0 1 2 3 2 2 2 The left endpoints of the intervals are 0 , 1 2 , 1 , 3 2 , 2 , 5 2 , the right endpoints of the intervals are 1 2 , 1 , 3 2 , 2 , 5 2 , 3, and we have 0 3 − 5 = 0 − 5 = − 5 f (0) = 2 ) 3 − 5 = 1 f ( 1 ( 1 8 − 5 = − 39 2 ) = 8 1 3 − 5 = 1 − 5 = − 4 f (1) = 2 ) 3 − 5 = 27 f ( 3 ( 3 8 − 5 = − 13 2 ) = 8 2 3 − 5 = 8 − 5 = 3 f (2) = 2 ) 3 − 5 = 125 f ( 5 ( 5 8 − 5 = 85 2 ) = 8 3 3 − 5 = 27 − 5 = 22 . f (3) = D.L. White (Kent State University) 5 / 7

  6. Example Therefore, we have f (0) · 1 2 + f ( 1 2 ) · 1 2 + f (1) · 1 2 + f ( 3 2 ) · 1 2 + f (2) · 1 2 + f ( 5 2 ) · 1 = L 6 2 ( − 5) · 1 2 + ( − 39 8 ) · 1 2 + ( − 4) · 1 2 + ( − 13 8 ) · 1 2 + (3) · 1 2 + ( 85 8 ) · 1 = 2 − 5 2 − 39 16 − 2 − 13 16 + 3 2 + 85 16 = − 15 = 16 = − 0 . 9375 and f ( 1 2 ) · 1 2 + f (1) · 1 2 + f ( 3 2 ) · 1 2 + f (2) · 1 2 + f ( 5 2 ) · 1 2 + f (3) · 1 = R 6 2 ( − 39 8 ) · 1 2 + ( − 4) · 1 2 + ( − 13 8 ) · 1 2 + (3) · 1 2 + ( 85 8 ) · 1 2 + (22) · 1 = 2 − 39 16 − 2 − 13 16 + 3 2 + 85 16 + 11 = 201 = 16 = 12 . 5625 . D.L. White (Kent State University) 6 / 7

  7. Example Both L 6 = − 0 . 9375 and R 6 = 12 . 5625 are (poor) approximations for � 3 x 3 − 5 dx = lim n →∞ L n = lim n →∞ R n . 0 Since f ( x ) is increasing, for any n we have � 3 x 3 − 5 dx � R n , L n � 0 so we know � 3 x 3 − 5 dx � 12 . 5625 . − 0 . 9375 � 0 The larger n we use, the closer L n and R n will be to the integral. We will see later that the exact value is � 3 x 3 − 5 dx = 5 . 25 . 0 D.L. White (Kent State University) 7 / 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend