riemann hilbert correspondence for irregular holonomic d
play

Riemann-Hilbert correspondence for irregular holonomic D -modules - PowerPoint PPT Presentation

Riemann-Hilbert correspondence for irregular holonomic D -modules (joint work with Masaki KASHIWARA) Andrea DAGNOLO Universit` a di Padova Italy Winter School on Higher Structures in Algebraic Analysis Padova, 18 February 2014 A.


  1. Riemann-Hilbert correspondence for irregular holonomic D -modules (joint work with Masaki KASHIWARA) Andrea D’AGNOLO Universit` a di Padova – Italy Winter School on Higher Structures in Algebraic Analysis Padova, 18 February 2014 A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 1 / 12

  2. The classical RH problem Hilbert’s 21st problem (1900) “A problem that Riemann himself may have in mind” “To show that there always exists a linear differential equation of the Fuchsian class, with given singular points and monodromic group” A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 2 / 12

  3. Fuchsian ODEs P ( z , ∂ z ) = a m ( z ) ∂ m z + · · · + a 1 ( z ) ∂ z + a 0 ( z ) , a j ∈ O C Definition z 0 ∈ C Fuchsian singularity: a m ( z 0 ) = 0, ord z = z 0 a m − m ≤ ord z = z 0 a j − j ∀ j Basis of m local solutions at z 0 of the form: u ( z ) = ( z − z 0 ) λ v ( z ) + (log terms) , λ ∈ C , v ∈ O C , z 0 λ � monodromy Corollary { u ∈ O C ; Pu = 0 } is a local system outside of the singular points A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 3 / 12

  4. D -modules X : complex manifold D X : sheaf of linear differential operators Definition M a D X -module � S ol ( M ) = R H om D X ( M , O X ) Example P ∈ D X � M = D X / D X P H 0 S ol ( M ) = { u ∈ O X ; Pu = 0 } holonomic D X -module � ODE regular holonomic D X -module � Fuchsian ODE C -constructible sheaf � local system A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 4 / 12

  5. � � � � � � � � � � � Regular RH correspondence D b ( D X ) : bounded derived category of D X -modules D b ( C X ) : bounded derived category of sheaves of C -vector spaces Theorem (Kashiwara 1984) S ol � D b ( C X ) D b ( D X ) op D b hol ( D X ) op D b rh ( D X ) op D b C - c ( C X ) ∼ analysis topology There is also an explicit reconstruction functor: D b rh ( D X ) ∋ M � F = S ol ( M ) ∈ D b C - c ( C X ) � R H om ( F , O t X ) ≃ M A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 5 / 12

  6. Subanalytic sheaves [Kashiwara-Schapira 2001] X sa the subanalytic site: ◮ open subanalytic subsets of X ◮ locally finite covers Mod ( C X sa ) subanalytic sheaves ( � ind-sheaves) Tempered distributions: � � D b t ( U ) = image D b X ( X ) − → D b X ( U ) O t X = Dolbeault complex with coefficients in D b t X S ol t ( M ) = R H om D X ( M , O t X ) Example E 1 / z = D C e 1 / z = D C / D C P , P ( z , ∂ z ) = z 2 ∂ z − 1 not Fuchsian C H 0 S ol t ( E 1 / z ) = “ lim C { Re ( 1 / z ) < c } → ” C − c − → + ∞ Caveat: S ol t ( E 1 / z ) ≃ S ol t ( E 2 / z ) C C A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 6 / 12

  7. Irregular ODEs P ( z , ∂ z ) = a m ( z ) ∂ m z + · · · + a 0 ( z ) , z 0 ∈ C not Fuchsian For w = ( z − z 0 ) 1 / r , basis of m formal solutions: ϕ ∈ C [ w − 1 ] , λ ∈ C , v ∈ � u ( w ) = e ϕ ( w ) w λ � � v ( w )+ (log terms) , O C , z 0 ∀ direction θ , ∃ analytic solution u with u ∼ � u on a sector S Caveat: u + u 1 ∼ � u if Re ϕ 1 < Re ϕ at θ � Stokes phenomenon Theorem ([Deligne] and [Malgrange] in the 80s) Irregular RH in dimension one, for fixed singular locus Idea: order as above the exponents, so that u is well defined in the graded part Caveat: difficult to extend in higher dimensions, cf [Sabbah 2013] A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 7 / 12

  8. Enhanced sheaves X × R ∞ = bordered subanalytic site ◮ open subanalytic subsets of X × P 1 ( R ) included in X × R ◮ locally finite covers Definition (influenced by [Tamarkin 2008]) E b ( C X ) = D b ( C X × R ∞ ) / { K : K ≃ π − 1 R π ∗ K } π : X × R ∞ − → X sa It is a commutative tensor category + ⊗ K 2 = R µ !! ( q − 1 1 K 1 ⊗ q − 1 K 1 2 K 2 ) convolution unit: C { t = 0 } = C X ×{ 0 } + ⊗ , I hom + , R f ∗ , R f !! , f − 1 , f ! Six operations: Lemma F �→ C E X ⊗ π − 1 F, C E D b ( C X ) ֒ → E b ( C X ) X = “ lim → ” C { t ≥ c } − c − → + ∞ A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 8 / 12

  9. Reconstruction of exponential modules � � ∂ t − 1 D b E D b t → D b t = H om D R ∞ ( E t R ∞ , D b t X = − − − X × R ∞ )[ 1 ] X × R ∞ X × R ∞ 0 O E X = (Dolbeault complex with coefficients in D b E X ) [ 1 ] S ol E ( M ) = R H om D X ( M , O E X ) ∼ S ol t ( M ⊠ E t R ∞ )[ 1 ] Theorem S ol E ( E ϕ E ϕ X = D X e ϕ ( ∗ D ) , ϕ ∈ O X ( ∗ D ) X ) ≃ “ lim → ” C { t + Re ϕ ( z ) ≥ c } − c − → + ∞ Generalizes the example of E 1 / z C Theorem E ϕ C { t + Re ϕ ( z ) ≥ c } , O E R H om ∼ R π ∗ I hom + X ≃ R H om ( “ lim X ) , → ” − c − → + ∞ Related to [D’A 2013] A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 9 / 12

  10. Structure of holonomic modules Key result from [Mochizuki 2011] and [Kedlaya 2011] Lemma A statement Q X ( M ) is true for any M ∈ D b hol ( D X ) and any X if: ⇒ Q U i ( M| U i ) ∀ i ∈ I, for X = � Q X ( M ) ⇐ i ∈ I U i an open cover. Q X ( M ) = ⇒ Q X ( M [ n ]) ∀ n ∈ Z . ⇒ Q X ( M ) , for M ′ − → M ′′ + 1 Q X ( M ′ )& Q X ( M ′′ ) = → M − − − → a d.t. Q X ( M ⊕ M ′ ) = ⇒ Q X ( M ) . Q X ( M ) = ⇒ Q Y ( D f ∗ M ) , for f : X − → Y projective. Q X ( M ) holds for M with a normal form along a n.c. divisor. M has normal form if it is a direct sum of exponential D -modules on polysectors along the divisor. A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 10 / 12

  11. � � � � � � � � � � RH correspondence Theorem S ol E : D b hol ( D X ) op − → E b ( C X ) is fully faithful S ol E ( M ) is R -constructible Reconstruction holds: hol ( D X ) ∋ M � K = S ol E ( M ) ∈ E b D b R - c ( C X ) � R H om ( K , O E X ) ≃ M Compatibility with the regular case: R H om ( ∗ , O E X ) hol ( D X ) op � � S ol E � E b � D b ( D X ) op D b R - c ( C X ) R H om ( ∗ , O t X ) S ol t � D b D b rh ( D X ) op D b rh ( D X ) op C - c ( C X ) ∼ ∼ A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 11 / 12

  12. Stokes phenomenon ϕ j ϕ 1 , ϕ 2 ∈ O C ( ∗ 0 ) � K j = S ol E ( E C ) ≃ “ lim C { t + Re ϕ j ( z ) ≥ c } → ” − c − → + ∞ M flat meromorphic connection ∀ θ : M ∼ θ E ϕ 1 C ⊕ E ϕ 2 C � K = S ol E ( M ) ∼ θ K 1 ⊕ K 2 { Re ( ϕ 1 − ϕ 2 ) = 0 } = ⊔ ℓ n � L n Stokes lines Lemma S an open sector � b ± , S ⊂ {± Re ( ϕ 1 − ϕ 2 ) > 0 } End E b ( C C ) ( π − 1 C S ⊗ ( K 1 ⊕ K 2 )) ≃ t , S ⊃ L n 0 , S ∩ L n = ∅ , n � = n 0 ( b ± upper/lower triangular in M 2 ( C ) , t = b + ∩ b − ) A. D’Agnolo (Padova) Riemann-Hilbert correspondence Padova, 18 February 2014 12 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend