ribhu kaul
play

Ribhu Kaul University of Kentucky Collaborators Nisheeta Desai (U. - PowerPoint PPT Presentation

Designer Hamiltonians for quantum spin liquids & exotic valence bond ordered states Ribhu Kaul University of Kentucky Collaborators Nisheeta Desai (U. Ky) Dr. Jon Demidio (U. Ky Lausanne) Prof. Matt block(U. Ky CSU-Sacramento)


  1. Designer Hamiltonians for quantum spin liquids & exotic valence bond ordered states Ribhu Kaul University of Kentucky

  2. Collaborators Nisheeta Desai (U. Ky) Dr. Jon Demidio (U. Ky Lausanne) Prof. Matt block(U. Ky CSU-Sacramento)

  3. Designer Models Model RVB: Topological Order Haldane Nematic

  4. Designer Models Model RVB: Topological Order Haldane Nematic

  5. Monte Carlo - Field Theory X H = − J σ i σ j h ij i Z ( r φ ) 2 + r φ 2 + u φ 4 S =

  6. Quantum Spin Chains X S i · S j H J = J h ij i d=1 DMRG, CFT, bosonization, Bethe ansatz S = 1 Z n ) 2 + i 2 S π Q d 2 x ( ∂ µ ˆ g

  7. Designer Models R.K. Kaul, R.G. Melko A. W. Sandvik, Ann. Rev. Cond. Mat. (2013) simple models of quantum many body physics sign problem free interesting physics study connections with QFT/topological terms in d>1 universality

  8. Designer Models Model RVB: Topological Order Haldane Nematic

  9. Anderson RVB (1973) RVB wavefunction Savary, Balents (2016)

  10. The Model Assign one of N color to each site N Many body Hilbert space N site

  11. The Model R. K. Kaul PRL (2015) define two-site “bond” wave function N 1 X p |S i = | αα i N α =1 e.g. For N=3 ( ( |S i 1 | | i i | i = + + √ 3 call this a “singlet” wave function

  12. The Model R. K. Kaul PRL (2015) Model is a sum of “singlet” projectors X H J = � J |S ij ih S ij | h ij i N 1 X |S i = p | αα i N α =1 cf. Affleck; Sachdev & Read; Harada, Kawashima & Troyer.

  13. Notes on Model X H J = � J |S ij ih S ij | h ij i • In spirit of Anderson’s original proposal • symmetry: SO( N ) singlets N 1 X |S i = p | αα i N • Apart from sign - Heisenberg model α =1

  14. Hilbert Space |S ih S| = 1 X | αα ih ββ | N α , β

  15. Quantum Dynamics |S ih S| = 1 X | αα ih ββ | N α , β

  16. Quantum Dynamics |S ih S| = 1 X | αα ih ββ | N α , β

  17. Quantum Dynamics |S ih S| = 1 X | αα ih ββ | N α , β

  18. Quantum Dynamics |S ih S| = 1 X | αα ih ββ | N α , β

  19. Quantum Dynamics |S ih S| = 1 X | αα ih ββ | N α , β

  20. Competition in model X H J = � J |S ij ih S ij | h ij i Competing tendency: Equal colors vs singlet formation

  21. Quantum, Classical: Loop model ( − β ) n Tr( H n ) � Tr( e − β H ) = n ! n SSE review, Sandvik (2010) typical term in an expansion for d=1 forms a tightly packed loop model! cf. Nahum, Chalker, Serna, Somoza, Ortuno

  22. Quantum Phase Diagram loops v/s wavefunctios (small- N ) : long loop phase — “quadruploar phase” (large- N ) : short loop phase — “singlet phase” what is the nature of singlet phase?

  23. Kagome Block, D’Emidio, Kaul (arxiv:2019)

  24. Large- N Arovas, Auerbach; Read, Sachdev; Affleck Block, D'Emidio, Kaul (arxiv:2019) X H J = � J |S ij ih S ij | h ij i H b = − J ⇣ ⌘ ⇣ ⌘ X b † i α b † b j β b i β n b = 1 j α N h ij i With forms new SO( N ) n b 6 = 1 spin “bosonic” representations

  25. Phase Diagram Block, D’Emidio, Kaul (arxiv:2019)

  26. Large- N Block, D’Emidio, Kaul (arxiv:2019) Access saddle with n b = κ b N i α ∂ τ b i α + N J | Q ij | 2 + Q ∗ ij b i α b j α + c . c . + λ i ( b † L b = b ∗ i α b i α − κ b N ) κ c = 0 . 148 . . . Uniform saddle : only gauge fluctuations! Z 2 Stable to confinement. QSL quadrupolar Z 2 κ b h b α i 6 = 0

  27. Phase Diagram Block, D’Emidio, Kaul (arxiv:2019)

  28. Phase Diagram Block, D’Emidio, Kaul (arxiv:2019)

  29. Phase Diagram Block, D’Emidio, Kaul (arxiv:2019)

  30. Phase Diagram Block, D’Emidio, Kaul (arxiv:2019)

  31. -Topological Order Z 2 Spectral gap ; e and m excitations — anyons!

  32. Topological Entanglement Entropy Levin & Wen; Kitaev & Preskill (2006) S = aL − γ for Z 2 γ = ln(2)

  33. Topological Entanglement Entropy D’Emidio (2019); Block, D’Emidio & Kaul (2019) cf. Melko, Hastings et al

  34. Topological Entanglement Entropy Block, D’Emidio, Kaul (arxiv:2019)

  35. Models Z 2 Kitaev toric code Balents, Fisher Girvin Kagome (cf Isakov et al) Kitaev honeycomb model Quantum Dimer Model ( Mossner & Sondhi; Misguich et al )

  36. Designer Model for QSL Kaul (2015); Block, D’Emidio, Kaul (arxiv:2019) X H J = � J |S ij ih S ij | h ij i N 1 X |S i = p | αα i N α =1 New simple model for topological order Z 2

  37. Designer Models Model for Spin Liquid Haldane Nematic

  38. 2+1 d: S=1/2 Néel-VBS Néel VBS S=1/2 Senthil Vishwanath, Balents, Sachdev, Fisher 2 ⌘ 2 L = 1 + 1 � � ⇣ ⌘ ⇣ ~ ~ r � i ~ r ⇥ ~ a z α a � � e 2 g � � Senthil & Fisher; Tanaka & Hu ~ � = ( n x , n y , n z , V x , V y ) d 3 x 1 i 2 ⇡ k Z Z � ) 2 + g ( r ~ d 3 xdu " abcde � a r u � b r x � c r y � d r τ � e S = vol( S 4 )

  39. S=1 phase transition Néel S=1 ?? ?? What are the natural disordered phases? What is the nature of the phase transition?

  40. S=1 phase transition Read & Sachdev Néel Haldane nematic S=1 ?? “natural transition” to 2-fold lattice nematic complex state with large entangled objects

  41. S=1 phase transition Néel Haldane nematic S=1 ?? exotic phase transition? 1 CP + doubled monopoles OR + O (3) × Z 2 O (4) model at θ = π Wang, Kivelson, Lee Need a J-Q model to study this transition!

  42. Sign Problem with S>1/2 Heisenberg model X S i · S j − S 2 � � H J = J ij A few other examples, for S=1: X ( S i · S j ) 2 H bq = − h ij i Harada & Kawashima General Strategy? sign free rotationally symmetric spin- S models

  43. Split-Spin Todo & Kato (2001); Kawashima & Gubernatis (1994); Kawashima & Harada (2004) a = 2 X s a S i = i a = 1 a i h e − β H ( S ) i h i e − β H ( s ) P Z = Tr S = Tr s

  44. Split-Spin idea Todo & Kato (2001); Kawashima & Gubernatis (1994); Kawashima & Harada (2004) a = 2 X s a S i = i a = 1 a i h e − β H ( S ) i h i e − β H ( s ) P Z = Tr S = Tr s (1 e.g. S=1 4 − s · s ) (1 H ij X 4 − s a i · s b 2 = S i · S j − 1 = − j ) a,b

  45. Split-Spin idea Todo & Kato (2001); Kawashima & Gubernatis (1994); Kawashima & Harada (2004) a = 2 X s a S i = i a = 1 a i h e − β H ( S ) i h i e − β H ( s ) P Z = Tr S = Tr s (1 e.g. S=1 4 − s · s ) (1 H ij X 4 − s a i · s b 2 = S i · S j − 1 = − j ) a,b H ij bq = 1 − ( S i · S j ) 2

  46. S=1 designer Desai & Kaul, PRL (2019)

  47. S=1 Phase Diagram Desai & Kaul, PRL (2019) X H ij X H p H = 2 + g 3 ⇥ 3 h ij i p

  48. Order Parameters Desai & Kaul, PRL (2019) B i ( r ) ≡ J S r · S r + e i X e i ( π , 0) · r B x ( r ) /N s φ = r X ψ = ( B x ( r ) − B y ( r )) /N s r Okubo, Harada, Lou, Kawashima (2015)

  49. Finite-Size Scaling Desai & Kaul, PRL (2019)

  50. Phase Transitions Desai & Kaul, PRL (2019)

  51. Phase Transitions Desai & Kaul, PRL (2019)

  52. Designer Model Desai & Kaul, PRL (2019) Néel Haldane nematic S=1 ?? Sign free model to realize Haldane nematic Interesting VB phase with long range singlets First order transition New designer models for S>1/2

  53. THE END

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend