ribbon based transfinite surfaces
play

Ribbon-based Transfinite Surfaces eter Salvi , Tam arady , Alyn - PowerPoint PPT Presentation

Introduction Transfinite Surface Interpolation New Representations Results Conclusion Ribbon-based Transfinite Surfaces eter Salvi , Tam arady , Alyn Rockwood P as V Budapest University of Technology and Economics


  1. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Ribbon-based Transfinite Surfaces eter Salvi † , Tam´ arady † , Alyn Rockwood ‡ P´ as V´ † Budapest University of Technology and Economics ‡ King Abdullah University of Science and Technology CAGD 31(9), pp. 613–630, 2014. GMP 2015 P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  2. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Outline Introduction 1 Curvenet-based Design Coons Patches Transfinite Surface Interpolation 2 Ribbons Domain Polygons Parameterizations Simple Parameterizations Constrained Parameterizations Blending Functions New Representations 3 Generalized Coons Patch Composite Ribbon Patch Results 4 Conclusion 5 P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  3. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Curvenet-based Design Motivation Free-form surface design based on feature curves Hand-drawn sketches or images as input Tools for 3D curve / cross-derivative generation Semi-automatically generated surfaces Key issue: n -sided surface representation P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  4. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Curvenet-based Design Conventional Surfacing Methods Trimming Defining the quadrilateral? Boundary modification? Stitching? Quadrilaterals Creating smooth divisions? Modification – effect on the dividing curves? Recursive subdivision Initial polyhedra? Cross-derivative constraints? P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  5. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Curvenet-based Design Transfinite Surface Interpolation Avoid dealing with control points or polyhedra No need for interior data Exact boundary interpolation Real-time editing of complex free-form models Smooth connections Previous work: Coons ’67 Charrot–Gregory ’84 Kato ’91 Sabin ’96 etc. P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  6. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Coons Patches C 1 Coons Patch Boundary curves: S ( u , 0), S ( u , 1), S (0 , v ), S (1 , v ) Cross-derivatives: S v ( u , 0), S v ( u , 1), S u (0 , v ), S u (1 , v ) Hermite blends: α 0 , α 1 , β 0 , β 1 � α 0 ( u ) β 1 ( u ) � = β 0 ( u ) α 1 ( u ) U � α 0 ( v ) β 1 ( v ) � V = β 0 ( v ) α 1 ( v ) � S ( u , 0) S u = S v ( u , 0) S ( u , 1) S v ( u , 1) � � S (0 , v ) S v S u (1 , v ) � = S u (0 , v ) S (1 , v )   S (0 , 0) S u (0 , 0) S (1 , 0) S u (1 , 0) S v (0 , 0) S uv (0 , 0) S v (1 , 0) S uv (1 , 0) S uv   =   S (0 , 1) S u (0 , 1) S (1 , 1) S u (1 , 1)   S v (0 , 1) S uv (0 , 1) S v (1 , 1) S uv (1 , 1) V ( S u ) T + S v U T − VS uv U T S ( u , v ) = P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  7. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Coons Patches Reformulation s 4 Positional and tangential P (s ) 3 3 P (s ) 4 4 T (s ) s 3 constraints: P i ( s i ) and T i ( s i ) 3 3 T (s ) 4 4 T (s ) Assume compatible twists: 2 2 T (s ) 1 1 s 1 W i , i − 1 = T ′ i (0) = − T ′ P (s ) i − 1 (1) 2 2 P (s ) 1 1 s 2 � α 0 ( s i +1 ) � T � P i ( s i ) 4 � � S ( u , v ) = − β 0 ( s i +1 ) T i ( s i ) i =1 � α 0 ( s i +1 ) � � α 0 ( s i ) � T � P i (0) 4 � P ′ i (0) � β 0 ( s i +1 ) T i (0) T ′ i (0) β 0 ( s i ) i =1 P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  8. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Coons Patches Ribbon-based Coons Patch Linear interpolants (ribbons): P i+1 R i ( s i , d i ) = P i ( s i ) + γ ( d i ) T i ( s i ) d i γ ( d i ) = β 0 ( d i ) /α 0 ( d i ) = 2 d i +1 Distance parameter d i = s i +1 d i Corner correction patch s i Q i , i − 1 ( s i , s i − 1 ) = R i (s i ,d i ) P i-1 P i P i (0) + γ (1 − s i − 1 ) T i (0) + γ ( s i ) T i − 1 (1) + γ ( s i ) γ (1 − s i − 1 ) W i , i − 1 4 4 � � S ( u , v ) = R i ( s i , d i ) α 0 ( d i ) − Q i , i − 1 ( s i , s i − 1 ) α 0 ( s i ) α 0 ( s i − 1 ) i =1 i =1 P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  9. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Overview Transfinite Surface Interpolation Input: Hermite data ( P i , T i ) Surface S ( u , v ) = n � Interpolant i ( s i , d i ) · i =1 Blend i ( d 1 , . . . , d n ) Constituents Ribbons Parameterization functions Domain polygon Blending functions P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  10. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Ribbons Ribbon Construction Continuous normal vector Given: boundary curves P i ( s i ) and normal vectors at some points function N i ( s i ) by RMF T i ( s i ) ⊥ N i ( s i ) Resulting surface P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  11. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Domain Polygons Domain Construction Regular n -sided polygon (good most of the time) Domain “similar” to the boundary curves Similarity of... Arc lengths Angles Measure of similarity: Deviation of arc length / angle ratios Use heuristics if measure > threshold (see V´ arady et al. ’11) P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  12. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Parameterizations Ribbon Mapping – Parameterization Constraints s i ∈ [0 , 1] For a point on side i ... Simple parameterization: d i = 0 s i − 1 = 1 s i +1 = 0 d i − 1 = s i d i +1 = 1 − s i Constrained parameterization: ∂ d i − 1 = ∂ s i ∂ d i − 1 = ∂ s i ∂ u ∂ u ∂ v ∂ v ∂ d i +1 = − ∂ s i ∂ d i +1 = − ∂ s i ∂ u ∂ u ∂ v ∂ v P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  13. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Parameterizations Bilinear Line Sweep (simple) P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  14. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Parameterizations Wachspress Distance Parameters (simple) For convex polygons λ i ( u , v ) = w i ( u , v ) / � k w k ( u , v ) w i ( u , v ) = C i / ( A i − 1 ( u , v ) · A i ( u , v )) ⇒ d i ( u , v ) = 1 − λ i − 1 ( u , v ) − λ i ( u , v ) P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  15. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Parameterizations Interconnected Parameterization (constrained) Let s i ( u , v ) be a line sweep (e.g. bilinear) d i ( u , v ) = (1 − s i − 1 ( u , v )) · α 0 ( s i ) + s i +1 ( u , v ) · α 1 ( s i ) P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  16. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Parameterizations Cubic Parameterization (constrained) Based on bilinear Constant parameter lines defined by cubic B´ ezier curves λ : fullness parameter Leads to a sixth-degree equation Only fourth-degree when λ = 1 3 Precomputable P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  17. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Parameterizations Example Using λ = 1 3 : P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  18. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Parameterizations Example Using λ = 1 2 : P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

  19. Introduction Transfinite Surface Interpolation New Representations Results Conclusion Blending Functions Blending Side Interpolants ⇒ SB Patch “Side-based” (SB) patch [Kato ’91] n S SB ( u , v ) = � R i ( s i , d i ) · B ∗ i ( d 1 , . . . , d n ) i =1 k � = i d 2 � 1 / d 2 k B ∗ i i ( d 1 , . . . , d n ) = = j 1 / d 2 k � = j d 2 � � � j j k Blend function singular in the corners P. Salvi, T. V´ arady, A. Rockwood BME & KAUST Ribbon-based Transfinite Surfaces

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend