replotting the nyquist plot a new visualization proposal
play

Replotting the Nyquist Plot: A New Visualization Proposal Predrag - PowerPoint PPT Presentation

Replotting the Nyquist Plot: A New Visualization Proposal Predrag Pejovi Introduction Nyquist stability criterion . . . started as a fix to Barkhausen criterion original derivation complicated . . . nowadays taught using


  1. Replotting the Nyquist Plot: A New Visualization Proposal Predrag Pejović

  2. Introduction ◮ Nyquist stability criterion . . . ◮ started as a fix to Barkhausen “criterion” ◮ original derivation complicated . . . ◮ nowadays taught using Cauchy’s argument principle ◮ fundamental, fairly esoteric, deep math . . . but elegant! ◮ highly abstract topological criterion, reduces to: 1. CW encirclement of − 1 + j 0 adds one unstable pole 2. CCW encirclement of − 1 + j 0 removes one unstable pole while closing the loop; topological and relative ◮ hard to teach, requires focused (and competent) students ◮ frequently hard to visualize due to imaginary axis poles, “closed” curve is not closed, but it “encloses” . . . ◮ and this is the point where our story begins . . .

  3. Nyquist Criterion Revisited: the tracking system + x e y Σ W ( s ) −

  4. Nyquist Criterion Revisited: assumptions the transfer function W ( s ) = N ( s ) D ( s ) let N ( s ) and D ( s ) be polynomials such that deg ( N ( s )) ≤ deg ( D ( s )) which is satisfied for systems without algebraic degeneration the problem is whether W ( s ) H ( s ) = 1 + W ( s ) is stable or not?

  5. A Word on Barkhausen . . . poles at 1 + W ( s ) = 0 i.e. − W ( s ) = 1 + j 0 WRONG generalization and a NONSENSE : stable if ❤❤❤❤❤❤❤❤ ✭ ✭✭✭✭✭✭✭✭ − W ( s ) ≤ 1 + j 0 ❤ or | W ( s ) | ≥ 1 BTW, which s ? For oscillators s = j ω 0 , where ℑ ( W ( s )) = 0 . . .

  6. Nyquist Criterion Revisited: the first disaster, W 0 ( s ) = 1 s , stable for sure W 0 ( s ) = 1 s W 0 ( s ) 1 1 + W 0 ( s ) = 1 + s pole at s = − 1 + j 0 , definitely stable

  7. Nyquist Criterion Revisited: the first disaster, W 0 ( s ) = 1 s , straightforward Nyquist Diagram 1e+06 500000 Imaginary Axis 0 -500000 -1e+06 -2 -1 0 1 2 Real Axis

  8. Nyquist Criterion Revisited: the first disaster, W 0 ( s ) = 1 s , escape contour j ω max 4 2 j ω min ℑ ( s ) 0 − j ω min − 2 − 4 − j ω max − 4 − 2 0 2 4 ℜ ( s )

  9. Nyquist Criterion Revisited: the first disaster, W 0 ( s ) = 1 s , here is what we need 2 . 0 1 . 5 1 . 0 0 . 5 ℑ ( W ( s )) 0 . 0 − 0 . 5 − 1 . 0 − 1 . 5 − 2 . 0 − 2 − 1 0 1 2 ℜ ( W ( s ))

  10. What Do We Really Plot? W ( s ) = W r ( s ) + j W i ( s ) where W r ( s ) = ℜ ( W ( s )) , and W i ( s ) = ℑ ( W ( s )) in polar form � ( W r ( s )) 2 + ( W i ( s )) 2 r ( s ) = ϕ ( s ) = atan2 ( W i ( s ) , W r ( s )) and r ( s ) is the problem! idea: compress r ( s ) somehow?

  11. Compression Function Requirements 1. ρ ( r ) in monotonic, to preserve topological properties of the critical point encirclements, 2. ρ (0) = 0 , to keep the same base point where the phase is irrelevant, 3. ρ (1) = 1 , to keep the critical point and visualization of the phase margin, 4. lim r →∞ ρ ( r ) is finite, to confine the diagram in a finite space.

  12. Compression Function ρ ( r ) = 4 π arctan ( r ) “amplitude angle” r → ∞ r r = 1 ρ = 1 ρ = 2 π 4 ρ 0 1 0 1 0 1

  13. A Family of Compression Functions r max r k ρ ( r ) = r max − 1 + r k r max is the radius of the circle the plot is confined into, this degree of freedom might be of some value k > 1 is a parameter r max = 2 and k = 4 π approximates the compression function applied in this paper the best, almost the same function, within 1.5% of r max (0.03)

  14. Bode Plot, W 0 ( s ) = 1 s 120 80 40 20 log ( r ) 0 − 40 − 80 − 120 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 180 90 ϕ 0 − 90 − 180 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 ω

  15. Amplitude Compression, r , r in decibels, and ρ r r [ dB ] ρ 1 0 1 10 20 1.8731 100 40 1.9873 1,000 60 1.9987 10,000 80 1.9999 100,000 100 2.0000

  16. Bode Plot Alternative, W 0 ( s ) = 1 s 2 1 ρ 0 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 180 90 0 ϕ − 90 − 180 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 ω

  17. Alternative Nyquist Plot, W 0 ( s ) = 1 s , strange, you’ve seen this graph before 2 . 0 1 . 5 1 . 0 0 . 5 ℑ ( W ( s )) 0 . 0 − 0 . 5 − 1 . 0 − 1 . 5 − 2 . 0 − 2 − 1 0 1 2 ℜ ( W ( s ))

  18. 1 2 of the Contour . . . 10 9 10 6 10 3 | s | 10 0 10 − 3 10 − 6 0 90 590 1090 1590 90 arg ( s ) [ ◦ ] 60 30 0 0 90 590 1090 1590 k

  19. Argument Increase, W 0 ( s ) = 1 s 2 ρ − 1 1 0 no change in the number of unstable poles 180 ϕ − 1 0 − 180 0 90 590 1090 1590 k

  20. 1 Example 1, W 1 ( s ) = ( s + 1) 2 Pole-Zero Map 1 0.5 Imaginary Axis 0 -0.5 -1 -1.1 -1.05 -1 -0.95 -0.9 Real Axis

  21. 1 Example 1, W 1 ( s ) = ( s + 1) 2 Nyquist Diagram 2 1 Imaginary Axis 0 -1 -2 -2 -1 0 1 2 Real Axis

  22. 1 Example 1, W 1 ( s ) = ( s + 1) 2 2 . 0 1 . 5 1 . 0 0 . 5 ℑ ( W ( s )) 0 . 0 − 0 . 5 − 1 . 0 − 1 . 5 − 2 . 0 − 2 − 1 0 1 2 ℜ ( W ( s ))

  23. 1 Example 1, W 1 ( s ) = ( s + 1) 2 2 1 ρ 0 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 90 0 ϕ [ ◦ ] − 90 − 180 − 270 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 ω

  24. 1 Example 1, W 1 ( s ) = ( s + 1) 2 2 ρ − 1 1 0 no change in the number of unstable poles 180 ϕ − 1 0 − 180 0 90 590 1090 1590 k

  25. 1 Example 2, W 2 ( s ) = s ( s + 1) 2 Pole-Zero Map 1 0.5 Imaginary Axis 0 -0.5 -1 -1 -0.8 -0.6 -0.4 -0.2 0 Real Axis

  26. 1 Example 2, W 2 ( s ) = s ( s + 1) 2 Nyquist Diagram 1e+06 500000 Imaginary Axis 0 -500000 -1e+06 -2 -1.5 -1 -0.5 0 Real Axis

  27. 1 Example 2, W 2 ( s ) = s ( s + 1) 2 2 . 0 1 . 5 1 . 0 0 . 5 ℑ ( W ( s )) 0 . 0 − 0 . 5 − 1 . 0 − 1 . 5 − 2 . 0 − 2 − 1 0 1 2 ℜ ( W ( s ))

  28. 1 Example 2, W 2 ( s ) = s ( s + 1) 2 2 1 ρ 0 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 0 − 90 ϕ [ ◦ ] − 180 − 270 − 360 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 ω

  29. 1 Example 2, W 2 ( s ) = s ( s + 1) 2 2 ρ − 1 1 0 no change in the number of unstable poles 180 ϕ − 1 0 − 180 0 90 590 1090 1590 k

  30. 1 Example 2, W 2 ( s ) = s ( s + 1) 2 closed loop, stable Pole-Zero Map 1 0.5 Imaginary Axis 0 -0.5 -1 -2 -1.5 -1 -0.5 0 Real Axis

  31. 3 Example 2a, W 2 a ( s ) = 3 W 2 ( s ) = s ( s + 1) 2 Nyquist Diagram 3e+06 2e+06 Imaginary Axis 1e+06 0 -1e+06 -2e+06 -3e+06 -6 -5 -4 -3 -2 -1 0 Real Axis

  32. 3 Example 2a, W 2 a ( s ) = 3 W 2 ( s ) = s ( s + 1) 2 2 . 0 1 . 5 1 . 0 0 . 5 ℑ ( W ( s )) 0 . 0 − 0 . 5 − 1 . 0 − 1 . 5 − 2 . 0 − 2 − 1 0 1 2 ℜ ( W ( s ))

  33. 3 Example 2a, W 2 a ( s ) = 3 W 2 ( s ) = s ( s + 1) 2 2 1 ρ 0 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 0 − 90 ϕ [ ◦ ] − 180 − 270 − 360 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 ω

  34. 3 Example 2a, W 2 a ( s ) = 3 W 2 ( s ) = s ( s + 1) 2 2 ρ − 1 1 0 +2 unstable poles 180 0 ϕ − 1 − 180 − 360 − 540 0 90 590 1090 1590 k

  35. 3 Example 2a, W 2 a ( s ) = 3 W 2 ( s ) = s ( s + 1) 2 closed loop, unstable Pole-Zero Map 1.5 1 Imaginary Axis 0.5 0 -0.5 -1 -1.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 Real Axis

  36. s + 1 Example 3, W 3 ( s ) = s (0 . 1 s − 1) Pole-Zero Map 1 0.5 Imaginary Axis 0 -0.5 -1 -2 0 2 4 6 8 10 Real Axis

  37. s + 1 Example 3, W 3 ( s ) = s (0 . 1 s − 1) Nyquist Diagram 1e+06 500000 Imaginary Axis 0 -500000 -1e+06 -1 -0.8 -0.6 -0.4 -0.2 0 Real Axis

  38. s + 1 Example 3, W 3 ( s ) = s (0 . 1 s − 1) 2 . 0 1 . 5 1 . 0 0 . 5 ℑ ( W ( s )) 0 . 0 − 0 . 5 − 1 . 0 − 1 . 5 − 2 . 0 − 2 − 1 0 1 2 ℜ ( W ( s ))

  39. s + 1 Example 3, W 3 ( s ) = s (0 . 1 s − 1) 2 1 ρ 0 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 360 270 ϕ [ ◦ ] 180 90 0 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 ω

  40. s + 1 Example 3, W 3 ( s ) = s (0 . 1 s − 1) 2 ρ − 1 1 0 − 1 unstable pole 180 0 ϕ − 1 − 180 − 360 0 90 590 1090 1590 k

  41. s + 1 Example 3, W 3 ( s ) = s (0 . 1 s − 1) bypass ambiguity ∆ ϕ = − π ∆ ϕ = + π − 1 + j 0

  42. s + 1 Example 3, W 3 ( s ) = s (0 . 1 s − 1) closed loop, on the stability boundary Pole-Zero Map 4 2 Imaginary Axis 0 -2 -4 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 Real Axis

  43. s + 1 Example 3a, W 3 a ( s ) = 2 W 3 ( s ) = 2 s (0 . 1 s − 1) Nyquist Diagram 2e+06 1e+06 Imaginary Axis 0 -1e+06 -2e+06 -2 -1.5 -1 -0.5 0 Real Axis

  44. s + 1 Example 3a, W 3 a ( s ) = 2 W 3 ( s ) = 2 s (0 . 1 s − 1) 2 . 0 1 . 5 1 . 0 0 . 5 ℑ ( W ( s )) 0 . 0 − 0 . 5 − 1 . 0 − 1 . 5 − 2 . 0 − 2 − 1 0 1 2 ℜ ( W ( s ))

  45. s + 1 Example 3a, W 3 a ( s ) = 2 W 3 ( s ) = 2 s (0 . 1 s − 1) 2 1 ρ 0 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 360 270 ϕ [ ◦ ] 180 90 0 10 − 6 10 − 4 10 − 2 10 0 10 2 10 4 10 6 ω

  46. s + 1 Example 3a, W 3 a ( s ) = 2 W 3 ( s ) = 2 s (0 . 1 s − 1) 2 ρ − 1 1 0 − 1 unstable pole 180 0 ϕ − 1 − 180 − 360 0 90 590 1090 1590 k

  47. s + 1 Example 3a, W 3 a ( s ) = 2 W 3 ( s ) = 2 s (0 . 1 s − 1) closed loop, stable Pole-Zero Map 1 0.5 Imaginary Axis 0 -0.5 -1 -8 -7 -6 -5 -4 -3 -2 -1 Real Axis

  48. Example 3b, W 3 b ( s ) = 1 2 W 3 ( s ) = 1 s + 1 2 s (0 . 1 s − 1) Nyquist Diagram 400000 Imaginary Axis 200000 0 -200000 -400000 -1 -0.8 -0.6 -0.4 -0.2 0 Real Axis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend