register bounded synthesis

Register-Bounded Synthesis Ayrat Khalimov Orna - PowerPoint PPT Presentation

Register-Bounded Synthesis Ayrat Khalimov Orna Kupferman Universite libre de Bruxelles Hebrew University Belgium Israel Why study bounded synthesis from universal automata? why


  1. Register-Bounded Synthesis Ayrat Khalimov Orna Kupferman Universite libre de Bruxelles Hebrew University Belgium Israel

  2. Why study bounded synthesis from universal automata?

  3. why register- bounded synthesis? β€’ Not a limitation: designer usually knows the sensible bound on the number of registers β€’ Added benefit: small programs

  4. why universal register automata? system All computations (π‘—π‘œ 0 , 𝑝𝑣𝑒 0 ) (π‘—π‘œ 1 , 𝑝𝑣𝑒 1 ) (π‘—π‘œ 2 , 𝑝𝑣𝑒 2 ) … satisfy a given specification.

  5. why universal register automata? system All computations (π‘—π‘œ 0 , 𝑝𝑣𝑒 0 ) (π‘—π‘œ 1 , 𝑝𝑣𝑒 1 ) (π‘—π‘œ 2 , 𝑝𝑣𝑒 2 ) … satisfy a given specification. Most specifications are derived from arbiter: βˆ€π‘’ ∈ 𝐸: 𝐇(π‘ π‘“π‘Ÿ ∧ 𝑗 = 𝑒 β†’ 𝐘 𝐆(π‘•π‘ π‘π‘œπ‘’ ∧ 𝑝 = 𝑒))

  6. why universal register automata? system All computations (π‘—π‘œ 0 , 𝑝𝑣𝑒 0 ) (π‘—π‘œ 1 , 𝑝𝑣𝑒 1 ) (π‘—π‘œ 2 , 𝑝𝑣𝑒 2 ) … satisfy a given specification. Most specifications are derived from arbiter: βˆ€π‘’ ∈ 𝐸: 𝐇(π‘ π‘“π‘Ÿ ∧ 𝑗 = 𝑒 β†’ 𝐘 𝐆(π‘•π‘ π‘π‘œπ‘’ ∧ 𝑝 = 𝑒)) Universal register automata can express this. Nondeterministic -- cannot.

  7. universal register automaton β€’ Works on words in Ξ£ Γ— 𝐸 Γ— 𝐸 πœ• β€’ Registers 𝑆 = {𝑠 1 , … , 𝑠 𝑙 𝐡 } , initialized 𝑀 0 β€’ Transition function 𝑅 Γ— Ξ£ Γ— π‘ˆπ‘‘π‘’ 𝑗 Γ— π‘ˆπ‘‘π‘’ 𝑝 β†’ 2 π‘…Γ—π΅π‘‘π‘•π‘œ Arbiter specification (coBuchi)

  8. universal register automaton π‘ π‘“π‘Ÿ,1 Β¬π‘ π‘“π‘Ÿ,2 Β¬π‘ π‘“π‘Ÿ,3 Β¬π‘•π‘ π‘π‘œπ‘’,1 … β€’ Word: Β¬π‘•π‘ π‘π‘œπ‘’,0 π‘•π‘ π‘π‘œπ‘’,1 β€’ Run-graph: π‘Ÿ 0 , 0 π‘Ÿ 0 , 0 π‘Ÿ 0 , 0 π‘Ÿ 0 , 0 π‘Ÿ 1 , 1

  9. register transducer β€’ Reads a letter in Ξ£ 𝐽 Γ— 𝐸 β€’ Outputs a letter in Ξ£ 𝑃 Γ— 𝐸 β€’ Registers 𝑆 = {𝑠 1 , … , 𝑠 𝑙 𝑑 } , initialized with 𝑀 0 β€’ Transition function 𝑇 Γ— Ξ£ 𝐽 Γ— π‘ˆπ‘‘π‘’ 𝑗 β†’ 𝑇 Γ— Ξ£ 𝑃 Γ— 𝑆 Γ— π΅π‘‘π‘•π‘œ

  10. arbiter β€’ Input: π‘ π‘“π‘Ÿ, 1 Β¬π‘ π‘“π‘Ÿ, 2 Β¬π‘ π‘“π‘Ÿ, 3 … ¬𝑕,0 𝑑 1 , 1 𝑕,1 𝑑 0 , 1 ¬𝑕,1 𝑑 0 , 1 … β€’ Run: (s 0 , 0)

  11. bounded synthesis problem Given: β€’ Ξ£ 𝐽 , Ξ£ 𝑃 β€’ universal register automaton 𝐡 over Ξ£ 𝐽 Γ— Ξ£ 𝑃 Γ— 𝐸 Γ— 𝐸 β€’ the number 𝑙 𝑑 of system registers Return: β€’ 𝑙 𝑑 -register transducer π‘ˆ such that π‘ˆ ⊨ 𝐡 , or β€œunrealizable” Bounded synthesis problem is solvable in EXP in 𝑅 and 𝑙 𝑑 , and 2EXP in 𝑙 𝐡 .

  12. abstraction 𝑩′ 𝑑 β†’ 𝑇 Γ— Ξ£ 𝑃 Γ— 𝑆 𝑑 Γ— π΅π‘‘π‘•π‘œ 𝑑 π‘ˆ: 𝑇 Γ— Ξ£ 𝐽 Γ— π‘ˆπ‘‘π‘’ 𝑗 β€² β†’ 𝑇 Γ— Ξ£ 𝑃 β€² π‘ˆ β€² : 𝑇 Γ— Ξ£ 𝐽 𝚻 𝑷 𝚻 𝐉 𝑼′ 𝑩𝒕𝒉𝒐 𝒕 𝒕 𝑼𝒕𝒖 𝒋 𝑺 𝒕 We construct register- less automaton 𝐡 β€² with β€² Γ— Ξ£ 𝑃 𝑅 β€² Γ— Ξ£ 𝐽 β†’ 2 𝑅 β€² β€² such that π‘ˆ β€² ⊨ 𝐡′ iff π‘ˆ ⊨ 𝐡 for every π‘ˆ or π‘ˆ β€² .

  13. abstracting a single transition

  14. abstracting a single transition 2 2 2 2 2

  15. abstracting a single transition 1 1 2 2 2 2 2 1

  16. abstracting a single transition

  17. abstracting a single transition

  18. abstracting a single transition Two possibilities: β€’ 𝑗 = 𝑠 π‘ˆ β€’ 𝑗 β‰  𝑠 π‘ˆ

  19. abstracting a single transition Two possibilities: β€’ 𝑗 = 𝑠 π‘ˆ β€’ 𝑗 β‰  𝑠 π‘ˆ

  20. abstracting a single transition

  21. one 𝑒𝑑𝑒 𝑑 can induce several 𝑒𝑑𝑒 𝐡

  22. bisimulation property of the abstraction transition 𝑑 , 𝑠 𝑒𝑑𝑒 𝑗 𝑑 , π‘π‘‘π‘•π‘œ 𝑑 of 𝐡 β€² and π‘Ÿ, 𝜌 π‘Ÿβ€², πœŒβ€² some π‘ˆ β€² transition 𝒋, 𝒑 β€² , π’˜ 𝒕 β€² 𝒓 β€² , π’˜ 𝑩 of 𝐡 and π‘Ÿ, 𝑀 𝐡 , 𝑀 𝑑 some π‘ˆ

  23. bisimulation property of the abstraction transition 𝒕 , 𝒔 𝒕 , 𝒃𝒕𝒉𝒐 𝒕 𝒖𝒕𝒖 𝒋 of 𝐡 β€² and π‘Ÿ, 𝜌 𝒓′, 𝝆′ some π‘ˆ β€² transition 𝑗, 𝑝 β€² , 𝑀 𝑑 π‘Ÿ β€² , 𝑀 𝐡 β€² of 𝐡 and π‘Ÿ, 𝑀 𝐡 , 𝑀 𝑑 some π‘ˆ

  24. β€’ For every π‘ˆ or π‘ˆ β€² : π‘ˆ β€² ⊨ 𝐡′ iff π‘ˆ ⊨ 𝐡 β€’ Recall that synthesis is EXP in |𝑅 β€² | β€’ 𝑅 β€² = 𝑅 Γ— Ξ  , where Ξ  is the set of partitions of 𝑆 = 𝑆 𝑑 βˆͺ 𝑆 𝐡 β€’ Ξ  is EXP in (𝑙 𝑑 + 𝑙 𝐡 ) => synthesis is 2EXP in 𝑙 𝑑 and 𝑙 𝐡 But system partitions behave deterministically => only EXP in 𝒍 𝒕

  25. Part 2

  26. environ system ment register register transducer transducer Environments have their own limits. Let them be register transducers. π‘“π‘œπ‘€||𝑑𝑧𝑑 = π‘—π‘œ 0 , 𝑝𝑣𝑒 0 π‘—π‘œ 1 , 𝑝𝑣𝑒 1 … Note: the number of values is at most 𝑙 𝑑 + 𝑙 𝑓 .

  27. env-sys-bounded synthesis problem Given: β€’ Ξ£ 𝐽 , Ξ£ 𝑃 β€’ universal register automaton 𝐡 with Ξ£ 𝐽 and Ξ£ 𝑃 β€’ the number 𝑙 𝑑 of system registers β€’ the number 𝒍 𝒇 of environment registers Return: β€’ 𝑙 𝑑 -register transducer 𝑑𝑧𝑑 such that π‘“π‘œπ‘€||𝑑𝑧𝑑 ⊨ 𝐡 for every 𝑙 𝑓 -register environment, or β€œunrealizable” Env-sys-bounded synthesis problem is solvable in EXP in |𝑅| and 𝑙 𝑑 , 2EXP in 𝑙 𝐡 and 𝒍 𝒇 .

  28. idea of the abstraction π‘Ÿ 0 , 𝑠 𝐡 = 𝑠 π‘ˆ = 𝑠 𝑓 ( 𝑑𝑒𝑝𝑠𝑓 𝑓 ) π‘Ÿ 0 , 𝑠 𝐡 = 𝑠 π‘ˆ β‰  𝑠 π‘Ÿ 0 , 𝑠 𝐡 = 𝑠 π‘ˆ = 𝑠 𝑓 𝑓 similarly…

  29. conclusion β€’ Cleaner algorithm => tighter complexity analysis (only EXP in 𝑙 𝑑 ) β€’ Solution to the environment-system-bounded synthesis problem In the full version: β€’ Non-determinacy β€’ Hierarchy of system and environment power

Recommend


More recommend