regge limit and the soft anomalous dimension
play

Regge limit and the soft anomalous dimension Simon Caron-Huot - PowerPoint PPT Presentation

Regge limit and the soft anomalous dimension Simon Caron-Huot (McGill University) Based on: 1701.05241,1711.04850 & in progress with: Einan Gardi, Joscha Reichel & Leonardo Vernazza Galileo Galilei Institute: Amplitudes in the LHC


  1. Regge limit and the soft anomalous dimension Simon Caron-Huot (McGill University) Based on: 1701.05241,1711.04850 & in progress with: Einan Gardi, Joscha Reichel & Leonardo Vernazza Galileo Galilei Institute: Amplitudes in the LHC era, Oct. 31 th 2018

  2. Nonperturbative forward physics: total pp cross-section: 160 accelerator pp 104 103 140 accelerator p p 102 ARGO-YBJ 101 100 Akeno 99 120 98 Fly’s Eye 97 96 Auger 95 (mb) 100 94 TOTEM 4 10 tot σ 80 ~p Area 60 constrained 40 3 5 2 4 10 10 10 10 10 s (GeV) [fig: Menon& Silva `13] 2

  3. 
 • Why does it grow? • Relativity + quantum mechanics 
 probability to decay in two partons p parton cascade wee parton target cross section Fig. 3-a • A cloud of virtual particles (pions, rho’s,..) 
 builds around the proton! [cartoon: Gottsman, Level&Maor] 3

  4. perturbative phenomenology of forward scattering: • Deep inelastic scattering/saturation (HERA,heavy ions) 
 small x = Regge, large Q 2 ⇒ perturbative 
 • Mueller-Navelet: pp->X+2jets, forward&backward ( ∆ η � 1 , ∆ φ ) for review of these: see 1611.05079

  5. theoretical motivations: One of few limits where perturbation theory 
 can be resumed Retain rich dynamics in 2D transverse plane: 
 -toy model for full amplitude -nontrivial function spaces -predicts amplitudes and other observables in 
 overlapping limits 5

  6. The (multi-)Regge limit at higher points has been extensively studied, especially in planar N=4 SYM. It reveals an amazing integrable system (next talk?) Here we’ll focus on A 2 → 2, but in QCD at finite N c . 
 It depends on: - energy: L ≡ log | s/t | − i π / 2 - IR regulator: 1/ 𝜁 ⇔ log(-t/ 𝜈 2 ) - color: C A , T 2 s , T 2 t , . . . 6

  7. Nice variables 1. Coupling runs with transverse momenta, 
 not CM energy ⇒ use α s ( − t ) 2. Crossing symmetry relates large-s & large-u limits ⇒ use symmetrical combination ✓ ◆ L ≡ 1 log − s − i 0 + log − u − i 0 2 − t − t � s � � � − i π → log � � t 2

  8. Crossing symmetry: Project onto signature eigenstates: ⇣ ⌘ M ( ± ) ( s, t ) = 1 M ( s, t ) ± M ( � s � t, t ) 2 These simple definitions remove all i\pi’s. The following have nice& real coefficients: 1 M ( − ) ( L, ↵ s ( − t ) , ✏ ) , i ⇡ M (+) ( L, ↵ s ( − t ) , ✏ ) 8

  9. 2 → 2 kinematic limits exponentiation 
 of IR div soft limit of BFKL 
 1 / ✏ = Regge limit of 𝜟 soft ∼ log − t soft µ 2 soft- 
 Regge BFKL 
 resummation Regge L ∼ log s − t 9

  10. BFKL redux [Balitsky,Fadin,Kuraev,Lipatov ’76-78] A simple, and correct, approach to high-energy scattering: 
 replace each fast parton by a null Wilson line R ∞ −∞ dx + A a + ( x + , 0 − ,x ⊥ ) T a U ( x ⊥ ) ≡ P e i

  11. The subtlety: projectiles contain more than one parton cloud of 
 ... radiated 
 partons

  12. Transverse distribution depends on energy resolution d = + � � d η � � � � z 1 (+perms.) � � � � z 2 Z d d η UU ∼ g 2 d 2 z 0 K ( z 0 , z 1 , z 2 ) ⇥ ⇤ U ( z 0 ) UU − UU • ‘shock’ = Lorentz-contracted t arget • 45 o lines = fast projectile partons • Each parton crossing the shock gets a Wilson line

  13. The Balitsky-JIMWLK equation d 2 z 0 z 0 i · z 0 j � d d η ⌘ H = α s Z ⇣ �⌘ d 2 z i d 2 z j T a i,L T a j,L + T a i,R T a j,R � U ab T a i,L T b j,R + T a j,L T b � ad ( z 0 ) i,R z 2 0 i z 2 2 π 2 0 j • Well established and tested [Balitsky ’95, Mueller, 
 Kovchegov, JIMWLK*] • Now well understood at NLL [Balitsky&Chirilli ’07&’13; Kovner,Lublinsky&Mulian ’13; SCH ’14] • Partial NNLL results [SCH&Herranen ’16; Henn& Mistlberger ’17; SCH,Gardi&Vernazza ’17] *Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov& Kovner 13

  14. Main feature: index contractions preserve 
 future two global symmetries: SU(N) past x SU(N) future past Spontaneously broken to diagonal in vacuum: h 0 | U ( x ⊥ ) | 0 i = 1 ‘Goldstone boson’ W = Reggeized gluon [Kovner& Lublinsky ’05] [SCH ’13] U ( x ⊥ ) = e igT a W a ( x ⊥ ) BFKL : expand in W’s and study linearized evolution

  15. Multi-Regge exchanges are suppressed by coupling M (+) M ( − ) M ( − ) . . . + + … + . . . D j D i α g . . . LL = one-Reggeon NNLL NLL (two W’s) (one-W exchange) Z A LL ∝ s α g ( t ) d ν c ( ν ) s E ( ν ) A NLL ∝ t ‘Regge cut’ ‘Regge pole’

  16. Perturbative structure of the BFKL Hamiltonian e igW a T a ∼ 1 + igWT + . . . n → n+k transitions: from LO B-JIMWLK  ( W ) 1   g 2 g 4 g 6   ( W ) 1  0 0 · · · ( W ) 2 g 2 g 4 ( W ) 2 0 0       d       ( W ) 3 g 4 g 2 ( W ) 3 0 0 = · · ·     ·   d η       ( W ) 4 g 4 g 2 ( W ) 4 0 0       · · · · · · · · · Leading BFKL and 
 required by symmetry of d/d η BKP kernels • Matrix is symmetrical: projectile/target symmetry • Growth/saturation: off-diagonal can’t be ignored • (‘Reggeon field theory’ which resums all, still elusive) 16

  17. • At NNLL, something new happens: 1 and 3 Reggeon states mix • @ 2-loops: violation of Regge pole factorization 
 [Del Duca, Falcioni, Magnea & Vernazza ’14] • @ 3-loops: first check of mixing matrix H 3 → 3 H 1 → 3 H 3 → 1

  18. We don’t actually compute these diagrams: 
 the LO B-JIMWLK Hamiltonian gives us simple 2d integrals all the work is to find the color factors that 
 multiply them, starting from the Hamiltonian. H k → k +2 = ↵ 2 Z � 0 ( W i − W 0 ) z Tr [ dz i ][ dz 0 ] K ii ;0 ( W i − W 0 ) x W y s F x F y F z F a ⇤ ⇥ (3.11) � W a 3 ⇡ i + ↵ 2 Z [ dz i ][ dz j ][ dz 0 ] K ij ;0 ( F x F y F z F t ) ab h ( W i − W 0 ) x W y s 0 W z 0 ( W j − W 0 ) t 6 ⇡ � 2 i 0 ( W j − W 0 ) t − ( W i − W 0 ) x W y − W x i ( W i − W 0 ) y W z 0 ( W j − W 0 ) z W t . j � W a i � W b j

  19. result for 2loops NNLL, in any gauge theory: ⇣ ⌘  12 ( C A ) 2 ⌘� + ⇡ 2 R (2) ⇣ s − u ) 2 � 1 M ( − , 2) D (2) + D (2) + D (1) D (1) M (0) ˆ ˆ ( T 2 ij → ij = ij → ij , i j i j ✓ ◆ � 1 8 ✏ 2 + 3 4 ✏⇣ 3 + 9 R (2) = = ( r Γ ) 2 8 ✏ 2 ⇣ 4 + . . . (3. Color operator precisely corrects factorization violation! ✔ at 3-loops NNLL, we computed coefficients 
 of 3 color structures: ij → ij = ⇡ 2 ⇣ C ( C A ) 3 ⌘ M ( − , 3 , 1) R (3) s − u ] + R (3) s − u + R (3) M (0) ˆ ˆ A T 2 s − u [ T 2 t , T 2 B [ T 2 t , T 2 s − u ] T 2 ij → ij ✓ 1 = 1 48 ✏ 3 + 37 ◆ R (3) 16 ( r Γ ) 3 ( I a − I c ) = ( r Γ ) 3 24 ⇣ 3 + . . . A ✓ ◆ ✔ Poles are consistent with IR exponentiation!

  20. Removing the ‘hat’ requires the 3-loop gluon Regge trajectory: H 1 → 1 , which affects only the R C color structure. In N=4, we could fix it from [Henn& Mistlberger ’16]  �  � ✏ 3 + 49 ⇣ 4 1 1 ✏ + 107 − ⇣ 2 144 ⇣ 2 ⇣ 3 + ⇣ 5 H (3) = N 2 + N 0 4 + O ( ✏ ) 0 + O ( ✏ ) 1 → 1 = c c 144 192 Upshot: 
 -new 3loop prediction in QCD, up to one constant 
 -machine set up to compute NNLL M (-) to 
 4&higher loops, modulo same constant. In N=4, that constant is known. 1701.05241 20

  21. Back to NLL: high-order Solution in the soft limit two-Reggeon exchange ( ∼ α ` s L ` − 1 ) . . . M (+) = leading order 
 [1711.04850] evolution 21

  22. Each rung = the BFKL Hamiltonian H 2 → 2 ˆ t ) ˆ t ) ˆ H = (2 C A − T 2 H i + ( C A − T 2 H m ‘integration’ part: d 2 � 2 ✏ k 0 Z ˆ r Γ (2 π ) 2 � 2 ✏ f ( p, k, k 0 ) [ Ψ ( p, k 0 ) − Ψ ( p, k )] H i Ψ ( p, k ) = ‘multiplication’ part: ◆ ✏ ◆ ✏ � ✓ p 2 p 2  ✓ H m Ψ ( p, k ) = 1 ˆ 2 − Ψ ( p, k ) − 2 ✏ k 2 ( p − k ) 2 Both increase transcendental weight by 1 22

  23. Evolution equation: Ψ ( ` ) = ˆ Ψ (0) = 1 . H Ψ ( ` − 1) , Exact solution in adjoint channel: Ψ = 1 Cases where eigenfunctions are known: [Lipatov] - Color singlet dipoles (x-space conformal symmetry) - Color adjoint (p-space ‘dual’ conformal symmetry) Unfortunately, for d ≠ 4 / other color reps., eigenfunctions are not known ⇒ iterative solution 23

  24. Outermost rungs are always easy (multiplication) 4-loop = single nontrivial integral NLL = − i ⇡ ( B 0 ) 4 p 2 ⇢ Z t ) 3 Ω mmm ( p, k ) M (+ , 4) ˆ ( C A − T 2 [D k ] k 2 ( p − k ) 2 3! � t ) 2 Ω mim ( p, k ) + (2 C A − T 2 t )( C A − T 2 T 2 s − u M (tree) = i ⇡ ( B 0 ) 4 ⇢ ✓ (2 ✏ ) 4 + 175 ⇣ 5 1 ◆ ( C A − T 2 t ) 3 ✏ + O ( ✏ 2 ) (2.32) 4! 2 ✓ ◆� 8 ✏ − 3 16 ⇣ 4 − 167 ⇣ 5 − ⇣ 3 + C A ( C A − T 2 t ) 2 ✏ + O ( ✏ 2 ) T 2 s − u M (tree) . 8 [SCH ’13] Note this has both leading& subleading IR divergences

  25. How to predict the IR divergences at higher-loops? Facts: 1. Wavefunction is finite as ✏ → 0 Ψ ( ` ) ( p, k ) ⇒ poles can only appear from final integration Z Ψ ( ` ) ( p, k ) k → 0 2. Evolution closes in soft limit: k → 0 ψ ( ` ) ( p, k ) ∼ ˆ k → 0 ψ ( ` − 1) ( p, k ) lim H lim 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend