accelerator physics
play

Accelerator-physics Mas Master ter Aca Acade demy 2 my 201 018 - PowerPoint PPT Presentation

Introduction to Accelerators and Accelerator-physics Mas Master ter Aca Acade demy 2 my 201 018 8 Kur urt A t Aulen ulenba bache her Institut f Institut fr K r Ker ernp nphys hysik ik Joh ohan anne nes s Gute Gutenb


  1. Introduction to Accelerators and Accelerator-physics Mas Master ter Aca Acade demy 2 my 201 018 8 Kur urt A t Aulen ulenba bache her Institut fü Institut für K r Ker ernp nphys hysik ik Joh ohan anne nes s Gute Gutenb nber erg g – Univ Univer ersität sität Main Mainz

  2. I.1.0 Program This morning: Introduction to accelerators This afternoon: Introduction to Accelerator physics This afternoon: 15:00 guided tour through the MAMI accelerator K. Aulenbacher Master-Academy 2

  3. I.1.0 Literatur Internet: Unterlagen der CERN Accelerator Schools (CAS) zu allgemeinen und speziellen Themen der Beschleunigerphysik unter http://cas.web.cern.ch/cas/ bzw. der U.S. Particle Accelerator School (USPAS) unter http://uspas.fnal.gov/ The Infancy of Particle Accelerators - Life and Work of Rolf Wideröe Compiled and edited by Pedro Waloschek http://www-library.desy.de/elbooks/wideroe/WiE-BOOK.htm und zur Vertiefung….. Berichte der „großen“ Beschleunigerphysik Konferenzen (seit 1965): http://accelconf.web.cern.ch/accelconf/ A.W. Chao, Physics of Collective Beam Instabilities in High Energy Accelerators, Wiley and Sons (download unter: http://www.slac.stanford.edu/~achao/wileybook.html) K. Aulenbacher Master-Academy 3

  4. I.1.1 Definitions Concept of acclerators/accelerator physics Particle- Beam formation Accelerator source Experi ment (externer Beam) Experi ment (internal beam exp.) K. Aulenbacher Master-Academy 4

  5. I.1.1 Definitions Particles: In Accelerators generated formed accleratec. stored: Elektronen (e - ), Protons (p), Ions (e.g. 12 C 1+ , 179 Au 79+ , 238 U 92+ ) Positrons (e + ), Anti-Protons (p) Muons ( m + , m - ) Neutrons (n) Molekules (z.B. LiH 2 - ) Created by accelerators and then used for experiments und dann ggf. manipuliert: Muons-, Pions- Neutrons short lived /exotic Isotops ( 6,8 He, 11 Li, 100 Sn) Superheavy nuclei ( 269 Ds – Darmstadium 110, 272 Rg – Röntgenium 111, Ununoctium - 118) Neutrinos Anti-Hydrogen Photons K. Aulenbacher Master-Academy 5

  6. I.1.1 Definitions accelerator: Beam preparation/formatin and increase of kinetic energy (accleration) (but also de-acceleration for instance for trapping exotic particles, e.g. anti-hydrogen) Beamparameter: time structure dc (direct current = ) Frequency f (typ. MHz – GHz) cw (continous wave = ) Pulslength d t (typ. ps – m s) Micro-Pulslänge d t (typ. ps – m s, runter bis zu fs) pulsed ( Macro + Micro) Macro-Pulslänge D t (typ ns – ms) Frequenz f (typ. Hz – kHz) internal (‚trapped‘)  external Beam duty cycle = D t × f (Tast-Verhältnis) K. Aulenbacher Master-Academy 6

  7. I.1.1 Definition Intensity: particle number n / Charge Q / Beam current I I = Q/t = n*q / t e.g.. cw-Beam with f=2.45GHz, d t=1.4ps, 255000 e - / Bunch (MAMI) → average current I = 2.45GHz*255000*1.602 · 10 -19 C / 1s = 100 m A → Peak-current Î = 255.000*1.602 · 10 -19 C / 1.4ps = 30mA average currents in accelerators pA bis A Peak-currents ~kA z.B 5kA = 3.1·10 9 e - in 100fs (XFEL, DESY) Beam dimensions: Transerse size + transverse momenta = Phase space („emittance) Paricel density in phase space = „Brightness“ ) K. Aulenbacher Master-Academy 7

  8. I.1 Definitionen Energie / Impuls: Unit of energy : 1eV = kinetic energy of particle with charge e after falling through potetial of 1V in vacuum = 1.602·10 -19 J X ( t , x , y , z )  m P ( E , p , p , p )  m x y z   0 0      2     2 2 2 (Skalarpro dukt) E m c p c 0 1 0 0   X X    0   0 0 1 0 m m        0 0    2 2   E mc m c (Aus Lorentztra fo) 0 (Lorentz-Transformation   in z-Richtung)       2 2 E E m c 1 m c kin 0 0                p m v m c m c oder auch E 0 0 c mit : m : Ruhemasse 0 v 1 1          1  2   c 2 1 Masseeinheit: eV/c 2 (oft wg. Normierung c=1 auch nur eV) Impulseinheit: eV/c (oft wg. Normierung c=1 auch nur eV) K. Aulenbacher Master-Academy 8

  9. I.1.1 Definition Storage ring: (Large) trap for charged particles with high kinetic energies ) E.g. Electrons: E=105GeV ( LEP / Perimeter 27km, CERN bis 2000)  = 105GeV / 511keV = 205500 /  =0.999999999988 4 x 8.7·10 11 e - correspond to 58.5kJ stored Energy Für Protonen: E=7TeV (im LHC / perimeter 27km, CERN ab 07/2008)  = 7TeV / 938.3MeV = 7460 /  =0.9999999910 Für 2808 x 1.15·10 11 p ents 362.1MJ gespeicherte Energie other Parameter: Spin / Polarisation ionic states Stability of current, position angle, energy Positions- / Winkelstabilitäten (sub m m Auflösung) Energiestabilität (z.B. MAMI 1keV bei 855MeV) K. Aulenbacher Master-Academy 9

  10. I.2 Accelerators in fundamental research Mikroskopy to uncover small structures l: Wellenlänge size d Resolution of structure d requires l < d (Licht: Wellenlänge = 400 – 700nm ~ m m) K. Aulenbacher Master-Academy 10

  11. I.2 h de Broglie relation l  h = 6.626·10 -34 Js = 4.136 ·10 -21 MeV/s (Matter/wave duality) p 7.7MeV 4 He: p =  /c E = 0.064 / c · (7.7MeV+3755.5MeV) = 240.8 MeV/c → l = 5·10 -15 m 1GeV 4 He: p =  /c E = 0.613 / c · (1000MeV+3755.5MeV) = 2917.4 MeV/c → l = 4·10 -16 m Structur size momentum Elektron-energy, kinetic Atom 10 -10 m 12.4keV/c 150,4eV Atomkern 10 -14 m 124MeV/c 123,5MeV Hadronen (p,n) 10 -15 m 1240MeV/c 1239,5MeV Hochenergie- physik 10 -18 m ~TeV/c ~TeV String Theorie 10 -33 m ~ 10 15 TeV/c ~ 10 15 TeV K. Aulenbacher Master-Academy 11

  12. nuclei, e.g. Helium: Proton (1919) & Neutron (1931) (Nukleons) n p p n Elektron (1898) Proton: 10 -15 m, Ladung e + e Neutron: 10 -15 m, „neutral“ (point like,  E>300 MeV charge – e) ….but… K. Aulenbacher Master-Academy 12

  13. K. Aulenbacher Master-Academy 13

  14. Leptonen Quarks 1 e u d Elektron n e 12 5 ~ 0 ? 1 up down 2 Masse c n m Müon s m ~ 0 ? 215 210 2.500 strange charm 3 t n t b t Tau ~ 0 ? 3.500 8.300 340.000 bottom top 1 e - 1/3 e - Ladung 0 2/3 e + 4 Kräfte: Gravitation, Elektromagnetismus, Schwache Kraft, Starke Kraft Photon (  ) Z 0 , W ± (8x) QED QCD K. Aulenbacher Master-Academy 14

  15. Hadronen Baryonen Mesonen Neutron Proton Pion u u d d u u d d m=938,3MeV m=939,6MeV m=139,6MeV m u =3MeV m d =6MeV ? ? ? many open questions ? ? ? Confinement ? Why 3 hierarchy ? ? ? ? ? ? ? ? Higgs mass 120GeV) K. Aulenbacher Master-Academy 15

  16. Der Large Hadron Collider, CERN Proton – Proton Collider mit 2 · 7.000.000.000.000eV = 14TeV Energie p p LHC K. Aulenbacher Master-Academy 16

  17. K. Aulenbacher Master-Academy 17

  18. Large Hadron Collider, CERN Operational since: 2007 630MJ stored energy (~1000 PKW mit 100km/h) 1200 superconducting magnets 8,3T Data rate: 22000 DVD / s Darin ca. ein wichtiges Ereignis ! Internationales Projekt: K. Aulenbacher Master-Academy 18

  19. Why operate ‚small‘ accelerators like the Mainzer Mikrotron MAMI ? K. Aulenbacher Master-Academy 19

  20. Hadronen Collider are „Nucleon - smashers“ u u u u d d K. Aulenbacher Master-Academy 20

  21. MAMI serves as a „precision tool“ point like Electron e e Nukleons are many body structures (Valence- quarks, Gluons, „Sea - Quarks“ generated by very complex „strong“ interaction K. Aulenbacher Master-Academy 21

  22. Purpose of MAMI Coincidence experiments with c.w. beam to give optimum conditions for data acquisation. K. Aulenbacher Master-Academy 22

  23. „Drei Spektrometer Anlage“ K. Aulenbacher Master-Academy 23

  24. z.B. Charge distribution in Neutron Older prediction Recent Measurement at MAMI  Experimental tests for deeper understanding of strong interaction K. Aulenbacher Master-Academy 24

  25. Nukleon (Proton, Neutron) ~ 10 -15 m ? 2 1 E out , p out , S out E in , p in , S in 3 Beam: E=1508MeV ± 0.030MeV (0.002%) E i , p i , S i I= ~ pA – 100 m A direction and position stable ~ 10 m m and murad ? If 1 + 2 + 3 are known, then may be determined! Coincidence-Experiments need cw-beams ! K. Aulenbacher Master-Academy 25

  26. d.c. voltages: Van de Graaff 10.000.000V (1931) Source Vacuum Band- Generator d.c. beam e.g. a -particles v = 10,3%•c Target K. Aulenbacher Master-Academy 26

  27. 6.000.000V = 6MV Van de Graaff of HMI Berlin K. Aulenbacher Master-Academy 27

  28. 1924 Idea: Gustav Ising 1927 proof of principle: Rolf Wideröe (Aachen) Drifttube linear acclerator with „ac“ fields Source of Sodium +25.000eV Ions -25.000V K. Aulenbacher Master-Academy 28

  29. Driftröhren-Linearbeschleuniger mit Wechselfeldern Quelle für +25.000eV Natrium Ionen +25.000eV -25.000V K. Aulenbacher Master-Academy 29

  30. Driftröhren-Linearbeschleuniger mit Wechselfeldern =50.000eV Quelle für +25.000eV Natrium Ionen +25.000eV -25.000V K. Aulenbacher Master-Academy 30

  31. Modern realisation for fast particles: Microwaves and resonator chains („cavities“) 25.000 W RF-power K. Aulenbacher Master-Academy 31

  32. K. Aulenbacher Master-Academy 32

  33. surf K. Aulenbacher Master-Academy 33

  34. surf K. Aulenbacher Master-Academy 34

  35. surfin’ on the wave K. Aulenbacher Master-Academy 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend