algorithmes de traitement d image pour l estimation des
play

Algorithmes de traitement dimage pour lestimation des caract - PowerPoint PPT Presentation

Algorithmes de traitement dimage pour lestimation des caract eristiques locales de la diffusion. Orateur : D. Tschumperl e Travail en collaboration avec Haz-Edine Assemlal and Luc Brun GREYC-ENSICAEN (CNRS UMR 6072), CAEN, FRANCE


  1. DTI versus higher order models DTI Fibers 2nd-order tensor higher orders Raw data [Basser94] approaches Numerous approaches exist: GDTI [Liu03], PASMRI [Jansons03], HODT / DOT [¨ Ozarslan03,06], Spherical Deconvolution [Tournier04], ODF [Tuch04, Descoteaux-etal05], etc. (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 23 / 68

  2. Spherical Harmonics: Definition Spherical harmonics are a basis for complex functions on the unit sphere. We use a modified basis constrained to be real and symmetric (imaginary and non-symmetric parts = noise) ∀ ( θ q , φ q ) ∈ Ω S = [0 , π ] × [0 , 2 π ) , S : Ω S → R S ( θ q , φ q ) = � N j =0 c j Y j ( θ q , φ q ) = ˜ BC j ( θ q , φ q ) , (1)   Y 1 ( θ 1 , φ 1 ) . . . Y N ( θ 1 , φ 1 ) . . ... with ˜ . . B =   . .   Y 1 ( θ n s , φ n s ) . . . Y N ( θ n s , φ n s ) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 24 / 68

  3. Angular Atoms √ 2 R ( Y m  l ) if 0 < m ≤ l  Y 0 y m l , if m = 0 = with l ∈ 2 N (2) l √ 2 ℑ ( Y | m |  ) if − l ≤ m < 0 l Figure: Real and symmetric spherical harmonics: first orders l = 0 , 2 , 4 , 6. Blue indicates a negative value, whereas indicates red a positive value. (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 25 / 68

  4. Angular profile using Spherical Harmonics (a) (a) 6 coefficients Figure: Square sampled along a Figure: Angular reconstruction along 5-subdivided icosahedron. with increasing truncation order L . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 26 / 68

  5. Angular profile using Spherical Harmonics (a) (a) 15 coefficients Figure: Square sampled along a Figure: Angular reconstruction along 5-subdivided icosahedron. with increasing truncation order L . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 26 / 68

  6. Angular profile using Spherical Harmonics (a) (a) 28 coefficients Figure: Square sampled along a Figure: Angular reconstruction along 5-subdivided icosahedron. with increasing truncation order L . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 26 / 68

  7. Angular profile using Spherical Harmonics (a) (a) 45 coefficients Figure: Square sampled along a Figure: Angular reconstruction along 5-subdivided icosahedron. with increasing truncation order L . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 26 / 68

  8. Angular profile using Spherical Harmonics (a) (a) 66 coefficients Figure: Square sampled along a Figure: Angular reconstruction along 5-subdivided icosahedron. with increasing truncation order L . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 26 / 68

  9. Angular profile using Spherical Harmonics (a) (a) 91 coefficients Figure: Square sampled along a Figure: Angular reconstruction along 5-subdivided icosahedron. with increasing truncation order L . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 26 / 68

  10. Angular profile using Spherical Harmonics (a) (a) 120 coefficients Figure: Square sampled along a Figure: Angular reconstruction along 5-subdivided icosahedron. with increasing truncation order L . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 26 / 68

  11. Angular profile using Spherical Harmonics (a) (a) 153 coefficients Figure: Square sampled along a Figure: Angular reconstruction along 5-subdivided icosahedron. with increasing truncation order L . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 26 / 68

  12. Orientation Density Function (ODF) The ODF Ψ at direction u is defined as the radial projection of the diffusion PDF � ∞ Ψ( u ) = o P ( α u ) d α (3) � = P ( r , θ, z ) δ ( θ, z ) rdrd θ dz ODF Problem: How to get the PDF ? (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 27 / 68

  13. Funk-Radon Transform (FRT) The FRT (4) is a smoothed estimation of the true ODF (3) [Tuch04] � G q ′ ( u ) = 2 π q ′ P ( r , θ, z ) J 0 (2 π q ′ r ) rdrd θ dz (4) FRT Besides, the ODF can be directly expressed from diffusion signal in spherical harmonics by a Least Square minimization [Descoteaux06] ODF ≈ G q ′ = ˜ P ˜ � B C = 2 π P l j (0) c j Y j (5) j (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 28 / 68

  14. Least Square ODF estimation Least Square ODF estimation : Enables resolution of any specific local structure (crossing fibers) Model-free method: no assumption on macroscopic diffusion Light matrix computations But... Least Square method not adapted to Rice noise model [Sijbers98] No guaranty on spatial coherence of the ODF field (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 29 / 68

  15. Variational estimation of ODF � � Ω S [ � n s � min C :Ω C → R N E ( C ) = k ψ ( | D k | )] + αϕ ( ||∇ C || ) d Ω S , (6) j ˜ B k , j ˜ P − 1 with D k ( p ) = S k ( p ) − � C j ( p ) j The best fitting coefficients are computed with a gradient descent coming from the Euler-Lagrange derivation of the energy E . This leads to a set of multi-valued partial derivate equation.  C t =0 = U 0   (7) ′ ( ||∇ C || ) ∂ C j B q , j + α div( ϕ q ψ ′ ( | D q | ) sign( D q ) P − 1 ˜  = � ∇ C )  ∂ t j ||∇ C || (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 30 / 68

  16. Advantages: regularity Ensure a global regularity of the ODF field: ϕ ( ||∇ C ( p ) || ) Spherical harmonics coefficients characterize anistropy [Frank02] l = 2 Single fibers l = 4 l = 0 orientation Several fibers Isotropic diffusion orientation Example of possible regularization function ϕ (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 31 / 68

  17. Advantages: adaptive to noise distribution ψ -likelihood function adapted to MRI noise law: The best ψ function is the one specific to MR scanners, ie. Rice distribution We seek S r which maximizes a posteriori (MAP) the log-posterior probability log p ( S r | S ) = log p ( S | S r ) + log p ( S r ) − log p ( S ) (8) Consequently the pointwise likelihood is σ 2 − ( S 2 + S 2 � S · S r � ψ ( S r ) = log p ( S | S r , σ ) = log S r ) + log I 0 (9) 2 σ 2 σ 2 [Basu,2006] (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 32 / 68

  18. Simulation: influence of Rice model (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 33 / 68

  19. Results on synthetical data ODF field DTI field Results are good on perfect datasets, what about MRI acquisition noise ? (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 34 / 68

  20. Results on human brain hardi data DTI field GFA (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 35 / 68

  21. Results on human brain hardi data ODF field GFA (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 36 / 68

  22. Simulation: energy minimization (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 37 / 68

  23. Simulation: regularization without with zoom GFA (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 38 / 68

  24. DTI GFA (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 39 / 68

  25. Consequences on fiber-tracking LS GFA (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 40 / 68

  26. Consequences on fiber-tracking LS GFA (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 41 / 68

  27. Consequences on fiber-tracking PDE GFA (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 42 / 68

  28. Fibertracking: regularization As for DTI models, ODF fibertracking is very sensitive to noise. without regularization with regularization (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 43 / 68

  29. Context 1 DTI model : Diffusion Tensor Imaging 2 QBI model : Q-Ball Imaging 3 Measuring the PDF : DSI and Multi Q-Ball 4 Conclusions & Perspectives 5 (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 44 / 68

  30. Signal acquisition Figure: Diffusion MRI acquisition steps. Why measuring the PDF ? The PDF brings new important radial information. (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 45 / 68

  31. Interest of Radial part of the PDF Information on cells micro-structure that composed the organic tissue. Ex: axon diameter, number of compartments. Spinal cord [Cohen02] May increase detection of anomalies such as demyelinization, a symptom of multiple sclerosis. Figure: Myelination of an axone [www.jdaross.cwc.net] (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 46 / 68

  32. Diffusion in a bi-homogeneous environment Figure: Experimental graph: human erythocytes rate for decreasing values of hematocrites. [Kuchel97] Empirical approximation of signal by a bi-exponential function (compartiments: intra/extra diffusion). (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 47 / 68

  33. Diffusion in a complex environment Figure: Simulation plot: fibers set of various diameters. [Cohen02] Observations Important information are found in the radial diffusion profile. (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 48 / 68

  34. High Angular Resolution Diffusion Imaging The Fourier Transform � q E ( q ) exp( − 2 π i q T p ) d q [Cory90,Callaghan91] PDF ( p ) = DSI: Fourier transform [Wedeen00] Very long acquisition time Needs high gradients ⇒ Magnetic field distortion (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 49 / 68

  35. High Angular Resolution Diffusion Imaging The Fourier Transform � q E ( q ) exp( − 2 π i q T p ) d q [Cory90,Callaghan91] PDF ( p ) = DSI: Fourier transform [Wedeen00] Very long acquisition time Needs high gradients ⇒ Magnetic field distortion Problem The DSI is not clinical-compliant. (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 49 / 68

  36. High Angular Resolution Diffusion Imaging The Funk-Radon Transform � ODF ( k ) = u ⊥ k E ( u ) d u HARDI: High Angular Diffusion Imaging [Tuch02] Reduced acquisition time Lack of radial information (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 49 / 68

  37. High Angular Resolution Diffusion Imaging The Funk-Radon Transform � ODF ( k ) = u ⊥ k E ( u ) d u HARDI: High Angular Diffusion Imaging [Tuch02] Reduced acquisition time Lack of radial information Problem The ODF does not give any radial information. (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 49 / 68

  38. HARDI Extension: multi-sphere imaging Figure: Example of HARDI extension [Assaf05, ¨ Ozarslan06, Wu07, Khachaturian07, Assemlal-et.al08, Assemlal-et.al09]. Better distribution of samples on the Q -Space. (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 50 / 68

  39. HARDI Extension: multi-sphere imaging Figure: Example of HARDI extension [Assaf05, ¨ Ozarslan06, Wu07, Khachaturian07, Assemlal-et.al08, Assemlal-et.al09]. Better distribution of samples on the Q -Space. Problem Still insufficient number of samples for a Fourier transform. Which mathematical tool for the signal estimation ? (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 50 / 68

  40. Continuous representation of the signal Continuous representation of the MR signal E in the following basis (Spherical Polar Fourier SPF): � q ∞ ∞ l � � � � a nlm R n ( || q || ) y m E ( q ) = (10) l || q || n =0 l =0 m = − l where a nlm expansion coefficients, R n and y m are respectively are radial l and angular atoms. The basis is orthonormal in spherical coordinates: � q � q � � �� � �� R n ′ ( || q || ) y m ′ R n ( || q || ) y m · d q = δ nn ′ ll ′ mm ′ l ′ l || q || || q || q ∈ R 3 (11) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 51 / 68

  41. Radial Atoms � 2 � 1 / 2 −|| q || 2 � || q || 2 n ! � � � L 1 / 2 R n ( || q || ) = exp (12) n γ 3 / 2 Γ ( n + 3 / 2) 2 γ γ (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 52 / 68

  42. Radial Atoms � 2 � 1 / 2 −|| q || 2 � || q || 2 n ! � � � L 1 / 2 R n ( || q || ) = exp (12) n γ 3 / 2 Γ ( n + 3 / 2) 2 γ γ Figure: Some radial atoms R n , Figure: Experimental plot [Regan06] γ = 100 (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 52 / 68

  43. Radial Atoms (a) Signal de diffusion Figure: Radial reconstruction along with increasing truncation order N . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 53 / 68

  44. Radial Atoms 1.1 1 Truth 0.9 Sample MR attenuation 0.8 Reconstruction 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 30 35 40 q (a) 1 Coefficient Figure: Radial reconstruction along with increasing truncation order N . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 53 / 68

  45. Radial Atoms 1.1 1 Truth 0.9 Sample MR attenuation 0.8 Reconstruction 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 30 35 40 q (a) 2 Coefficients Figure: Radial reconstruction along with increasing truncation order N . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 53 / 68

  46. Radial Atoms 1.1 1 Truth 0.9 Sample MR attenuation 0.8 Reconstruction 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 30 35 40 q (a) 3 Coefficients Figure: Radial reconstruction along with increasing truncation order N . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 53 / 68

  47. Radial Atoms 1.1 1 Truth 0.9 Sample MR attenuation 0.8 Reconstruction 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 30 35 40 q (a) 4 Coefficients Figure: Radial reconstruction along with increasing truncation order N . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 53 / 68

  48. Radial Atoms 1.1 1 Truth 0.9 Sample MR attenuation 0.8 Reconstruction 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 30 35 40 q (a) 5 Coefficients Figure: Radial reconstruction along with increasing truncation order N . (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 53 / 68

  49. Fitting the data How to fit the data From the diffusion samples, how do we retrieve the SPF coefficients ? (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 54 / 68

  50. Linear signal estimation The coefficient estimation is computed by the linear damped least square method: || E − MA || 2 + λ l || L || 2 + λ n || N || 2 A = arg min (13) A = ( M T M + λ l L T L + λ n N T N ) − 1 M T E (14) where M is the basis matrix, E is the MR signal vector and A is the coefficient vector:  � � � �  q 1 q 1 R 0 ( || q 1 || ) y 0 R N ( || q 1 || ) y L . . . 0 L || q 1 || || q 1 ||  . .  ... . . M =  , (15)   . .    � � � � q ns R 0 ( || q n s || ) y 0 q ns R N ( || q n s || ) y L . . . 0 || q ns || L || q ns || E = ( E ( q 1 ) , . . . , E ( q ns )) T (16) A = ( a 000 , . . . , a NLL ) T (17) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 55 / 68

  51. Simulation: linear least square reconstruction Figure: N = 0, L = 4, γ = 100, 1 sphere – 42 directions, PSNR: 33.337902, 30 Coefficients (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 56 / 68

  52. Simulation: linear least square reconstruction Figure: N = 3, L = 4, γ = 70, 3 spheres – 42 directions, PSNR: 45.172752, 45 Coefficients (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 56 / 68

  53. Simulation: linear least square reconstruction Figure: N = 5, L = 6, γ = 50, 10 spheres – 162 directions, PSNR: 50.255381, 168 Coefficients (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 56 / 68

  54. Features of the PDF Now that we have a continuous reconstruction of the diffusion signal E , how do we compute the PDF ? (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 57 / 68

  55. Features of the PDF Now that we have a continuous reconstruction of the diffusion signal E , how do we compute the PDF ? We don’t. This would require a lot of computation. Besides, the PDF is cumbersome to display. (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 57 / 68

  56. Features of the PDF Now that we have a continuous reconstruction of the diffusion signal E , how do we compute the PDF ? We don’t. This would require a lot of computation. Besides, the PDF is cumbersome to display. We are interesting in a data reduction suitable to display: features of the PDF. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (18) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 57 / 68

  57. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

  58. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

  59. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

  60. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

  61. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

  62. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

  63. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

  64. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

  65. Features of the PDF: projection Figure: Example: ODF feature. � G ( k ) = p ∈ R 3 PDF ( p ) H k ( p ) d p (19) (GREYC-ENSICAEN) Diffusion MRI JIRNFI’2009, Septembre 2009 58 / 68

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend