recycling galactic cosmic ray nuclei by shear
play

Recycling Galactic Cosmic-Ray Nuclei by Shear Acceleration: A Radio - PowerPoint PPT Presentation

Recycling Galactic Cosmic-Ray Nuclei by Shear Acceleration: A Radio Galaxy Model for Ultrahigh-Energy Cosmic Rays Shigeo S. Kimura Center for Particle Astrophys. PSU (IGC Fellow) Dept. Astronomy & Astrophys., PSU Dept. Physics,


  1. Recycling Galactic Cosmic-Ray 
 Nuclei by Shear Acceleration: 
 A Radio Galaxy Model for 
 Ultrahigh-Energy Cosmic Rays Shigeo S. Kimura Center for Particle Astrophys. PSU (IGC Fellow) Dept. Astronomy & Astrophys., PSU Dept. Physics, PSU ref) SSK, T.B. Zhang, K. Murase in prep. Collaborators Bing Theodore Zhang (Beijing Univ.), Kohta Murase (PSU, YITP)

  2. Outline • Introduction • Shear Acceleration in FR-I radio galaxies • UHECRs as Reaccelerated Galactic Cosmic Rays • Summary

  3. Outline • Introduction • Shear Acceleration in FR-I radio galaxies • UHECRs as Reaccelerated Galactic Cosmic Rays • Summary

  4. Ultra-High Energy Cosmic Rays E[eV] 10 18 19 20 10 10 10 ] 22217 -1 13210 7774 4611 )) sr 2639 24.5 3491 2238 1405 3450 5221 2629 569 2006 888 2 7585 10991 1344 60423 eV 34861 -1 26325 16317 267 s 130 -2 -1 m sr 54 24 2 -1 [ eV s -2 1 10 J /(m 23.5 4 24 /10 1 AGASA 3 3 E ( E Auger 23 × HiRes-I 10 J(E) log HiRes-II 22.5 Auger (ICRC 2015 preliminary) TA SD -1 17.5 18 18.5 19 19.5 20 20.5 10 17 17.5 18 18.5 19 19.5 20 20.5 log (E/eV) 10 log (E/eV) Auger (ICRC 15) 10 Abu-zayyat+13 • Air shower experiments reveal the existence of extremely efficient accelerators in the Universe. • E cut ~ 40—50 EeV ~ GZK cutoff energy

  5. Luminosity density E[eV] 18 19 20 10 10 10 waxman 11 22217 3 13210 10 7774 4611 )) 2639 24.5 3491 2238 1405 3450 5221 2629 569 2006 888 2 7585 10991 1344 60423 eV 34861 26325 16317 267 130 -1 ( α − 1)t eff *c (Mpc) sr 54 24 -1 s -2 10 J /(m 23.5 m=0 α =2 4 m=0 α =2.7 2 1 10 m=0 α =3 3 ( E m=3 α =2 23 m=3 α =2.7 10 m=3 α =3 log − 1 exp( − E c, π /E)+2H 0 ) − 1 ( τ − 1 0,ep exp( − E c,ep /E)+ τ 0, π 22.5 Auger (ICRC 2015 preliminary) 19 20 17.5 18 18.5 19 19.5 20 20.5 10 10 log (E/eV) E(eV) 10 • UHECR flux: ~ 0.1 particle km -2 yr -1 @100 EeV • Mean-free path of UHECRs: 100 Mpc • Luminosity density: 3x10 43 erg Mpc -3 yr -1

  6. 
 
 Source Candidates 1 AU 1 pc 1 kpc 1 Mpc 10 15 Neutron star Hillas 84 • AGN jets 
 Kotera+11 Takahara 90 
 10 10 P Murase+12 
 r o t o ≤ n Araudo+16 1 E max 0 21 e V • GRBs 
 F e White ≤ 10 5 E max 1 dwarf 0 20 AGN e V Waxman 95 
 B (G) G R Globus+15 
 B Asano+16 A 10 0 G N j e t s • Pulsars Hot spots SNR Blasi + 00, 10 –5 Fang+12 IGM shocks 10 –10 10 5 10 10 10 20 10 25 10 15 R (cm)

  7. Composition 850 <X max > [gm/cm 2 ] Data QGSJETII − 03 QGSJET − 01c SYBILL 2.1 Auger ICRC 15 800 Proton 750 Iron 700 TA 15 650 18.5 19 19.5 20 Energy log 10 (E/eV) • Proton @ E~ EeV, • gradually becomes heavier for higher energy • Data is consistent for two experiments, 
 but interpretation can be changed by analysis

  8. Fitting requirement 1000 Auger 2014 850 E Fe, max =10 20.2 eV protons E 2 dN/dE [eV cm -2 s -1 sr -1 ] 100 α =0.6 800 <X max > [g cm -2 ] 10 750 1 700 A=1-2 0.1 A=3-6 Iron A=7-19 650 A=20-39 A=40-56 0.01 17.5 18 18.5 19 19.5 20 20.5 17.5 18 18.5 19 19.5 20 20.5 log 10 Energy [eV] log 10 Energy [eV] Aloisio+14, Taylor+15 • E max,p ~ 6 EeV • Hard source spectrum: s ≲ 1 • Abundance for Auger data: 
 much heavier than the Galactic composition ratio • Need another EeV component

  9. Espresso Acceleration E 2.7 Flux(E) [m -2 s -1 sr -1 GeV 1.7 ] b � m - - m ln (A) ( ) m º ¢ = G - b = G - bm ( ) 4 Caprioli 15 ¢ - ¢ = ¢ m ¢ º ¢ ¢ f = - ´ ¢ + m b • Re-acceleration of galactic CRs by AGN jets 
 ¢ = G - bm + bm m = ¢ + bm —> composition & spectrum is well fitted m ¹ m • However, this model require extremely strong jets 
 » ¹ —> No source inside the UHECR horizon g G � ¢ = - m b ¢ = - ¢ z D J » � < b - g > f µ ¶ f µ W¢ ¢ + G W¢ ¢ µ µ » G - b � - = ~ m r » D J - + g d µ j ¢ º W¢ ¢ p ¢ = ¢ Î j p j p p F p � g � » F p D J � - µ r µ r ¢ ´ m � D J � - � j ¢ á ñ = G j ¢

  10. Auger: Galactic coordinate TA: equatorial coordinate Anisotropy Auger 15 TA 14 (d) 4 • weakly clustering, but not statistically significant + - Auger 15 • the result of cross correlation analysis is consistent with isotropic arrival —> N source ≳ 10 -6 Mpc -3 Takami+ 12 - = ´ • Luminous sources are disfavored Fang+16 + - a d = > y y = y = = - = ´ a d = � - � = - � ) = 3

  11. Purpose Re-cycling galactic CRs works for the composition 
 • —> consider AGN Jets Harder spectrum is required 
 • —> Shear acceleration High source density is favorable from anisotropy constraints 
 • —> FR-I galaxies Consider recycling galactic cosmic rays by shear acceleration in the FR-I radio galaxies

  12. Outline • Introduction • Shear Acceleration in FR-I radio galaxies • UHECRs as Reaccelerated Galactic Cosmic Rays • Summary

  13. á d ñ d á d ñ d á d ñ d á d ñ d µ Shear Acceleration á ñ • region 1 & 3: 
 á ñ p ¶ p ¶ ¶ ò ò á ñ = = = tail-on collision 
 ¶ ¶ ¶ —> E ⤵ • region 2 & 4: 
 head-on collision 
 p ¶ —> E ⤴ ò á ñ = ¶ = = = = p = x Earl 88, Subramanian 99, Rieger+ 06 For continuous shear layer, distribution function diffuses in p space á ñ ò x x x ¶ ¶ ⎛ ¶ ⎞ - = f p ( ) 1 f p ( ) = - + 2 p p D + ⎜ ⎟ p ¶ ¶ ¶ 2 t p ⎝ p ⎠ = + = = d d - ) = = = = g = = á d ñ = d d = + d - = = =

  14. Shear Acceleration • gyro radius > size of shear layer → discrete shear • Discrete shear: no analytic formulation 
 From MC simu., dN/dE ~ E 0

  15. Model Setup Cocoon Jet B jet R jet R esc B ext Kchekhovskoy+16 • Consider kpc away from the core • Jet becomes cylindrical around kpc scale • Mildly relativistic jet β j ~ 0.6 • Jet is long, L jet ~ 20 kpc >> R jet ~ 300 pc

  16. Model Setup Cocoon Jet B jet R jet R esc B ext Kchekhovskoy+16 • We perform Monte Carlo simulation • Bohm diffusion, λ ~ r g c/3 • isotropic scattering at the fluid rest frame • R esc ~ 10 R jet

  17. Simulation results EL E [s -1 ] E[eV] • Hard spectrum owing to shear acceleration • dN/dE ~ E 0 for E<E peak 
 Consistent with previous works

  18. from simulation results Analytic Estimate • Acceleration Time: e t acc = ⟨ ∆ t ⟩ p / ⟨ ∆ E/E ⟩ p , w as ⟨ ∆ E/E ⟩ p ≃ 4 Γ 2 j β 2 j / 3 on ⟨ ∆ t ⟩ p ∼ 2 R coc / ( c ), e energy gain per cycl , we can write t ≃ 3 e t acc ≃ 3 R coc / (2 β 2 j c ). ssion only for a transr • Escape time: , t esc ∼ R 2 coc / (6 D Bohm ). tting t acc ≃ t esc , w E peak ≃ eZ s 3 Γ 2 j β 2 j B coc R coc ∼ 2 . 1 Z s B 4 R 3 β 2 6 EeV , Consistent with the MC simulations Achieve a few EeV for protons

  19. Outline • Introduction • Shear Acceleration in FR-I radio galaxies • UHECRs as Reaccelerated Galactic Cosmic Rays • Summary

  20. Halo cocoon jet Low-E CR High-E CR Re-acceleration of 
 galactic cosmic rays • Galactic cosmic rays (GCRs) are diffusing in halo • Jet penetrates halo: 
 Low-E GCRs (< E inj ) are advected & cools down, 
 High-E GCRs (> E inj ) are injected to the shear accel.

  21. Re-acceleration of 
 galactic cosmic rays E 2 L E [erg s -1 ] SSK+ in prep Since FR-I radio galaxies are • elliptical, we enhance metal abundance for injected CRs. p, He : the Galactic CR 
 • others : the Galactic CR x3 E[eV] We can obtain hard spectrum & heavier composition • (f H , f He , f C-O , f Ne-Al , f Si-K , f Ca-Mn , f Fe ) =(72, 21, 4.3, 1.1, 0.54, 0.14, 0.38 ) • Luminosity ~ 10 41 erg/s, number density ~ 10 -5 Mpc -3 
 • —> consistent with the expected luminosity density & anisotropy

  22. Propagation of IGM Batista + 16 • Using CRpropa code that includes 
 a) decay of nuclei 
 b) photomeson production: p+ γ —> p + π
 c) photodisintegration : N A + γ —> N A-1 + p 
 d) photo-pair production: p+ γ —> p + e + + e - 
 (the code includes other channels) • Radiation fields: 
 EBL (infrared), CMB (radio) G. Müller+ ICRC 13 Neutrino, Photon EeV Nucleus

  23. Spectrum at the Earth SSK+ in prep • Compatible with the Auger result. • A bit lower flux around E ~ 30 EeV • We need another EeV component cf.) Aloisio+14

  24. Composition at the Earth SSK+ in prep • Consistent with the Auger feature: 
 heavier for higher E • < ln A> is heavier 
 for E > 10 EeV • σ 2 (ln A) is comparable • For higher E peak model, 
 <ln A> is better, but the spectrum is worse

  25. Outline • Introduction • Shear Acceleration in FR-I radio galaxies • UHECRs as Reaccelerated Galactic Cosmic Rays • Summary

  26. Summary • Experiments for UHECRs show 
 a) Cutoff energy: 40-50 EeV 
 b) Luminosity density: 3x10 43 erg Mpc -3 yr -1 
 c) Heavier composition for higher energy 
 d) Large number density: n >10 -6 Mpc -3 • The model of re-acceleration of galactic CRs by shear in FR-I radio galaxies are consistent with all the requirement above. E 2 L E [erg s -1 ] E[eV]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend