recursive equations for arbitrary scattering processes
play

Recursive equations for arbitrary scattering processes Costas G. - PowerPoint PPT Presentation

Recursive equations for arbitrary scattering processes Costas G. Papadopoulos HEP2006, April 13-16, 2006, Ioannina HEP - NCSR Democritos High Energy and high Luminosity make necessary precision calculations


  1. ✬ ✩ � Let n external particles with momenta p µ i , i = 1 . . . , n , and define the momentum P µ � P µ = p µ I ⊂ { 1 , . . . , n } i , i ∈ I � the binary vector � m = ( m 1 , . . . , m n ), where its components take the values 0 or 1 : n � P µ = m i p µ i . i =1 � Moreover this binary vector can be uniquely represented by the integer n � 0 ≤ m ≤ 2 n − 1 2 i − 1 m i , m = i =1 � Replace b µ ( P ) → b µ ( m ) . ✫ ✪ HEP - NCSR Democritos

  2. ✬ ✩ ♣ Convenient ordering of integers in binary representation ⇒ level l , defined by n � l = m i . i =1 ✫ ✪ HEP - NCSR Democritos

  3. ✬ ✩ ♣ Convenient ordering of integers in binary representation ⇒ level l , defined by n � l = m i . i =1 ♣ external momenta are of level 1 ✫ ✪ HEP - NCSR Democritos

  4. ✬ ✩ ♣ Convenient ordering of integers in binary representation ⇒ level l , defined by n � l = m i . i =1 ♣ external momenta are of level 1 ♣ the total amplitude corresponds to the unique level n integer 2 n − 1 A = b (1) · b (2 n − 2) ✫ ✪ HEP - NCSR Democritos

  5. ✬ ✩ ♣ Convenient ordering of integers in binary representation ⇒ level l , defined by n � l = m i . i =1 ♣ external momenta are of level 1 ♣ the total amplitude corresponds to the unique level n integer 2 n − 1 A = b (1) · b (2 n − 2) This ordering dictates the natural path of the computation : start- ing with level-1 sub-amplitudes, we compute the level-2 ones using the Dyson-Schwinger equations and so on up to level n − 1 ✫ ✪ HEP - NCSR Democritos

  6. ✬ ✩ The solution e − (1) e + (2) → e − (4) ¯ ¯ ν e (8) u (16) d (32) 1 10 33 2 -2 8 1 1 12 33 4 -2 8 1 1 48 34 16 -3 32 4 2 26 -4 10 33 16 -3 . . . 2 62 -2 10 33 52 -1 2 62 -2 12 33 50 -1 2 62 -2 58 31 4 -2 2 62 -2 58 32 4 -2 2 62 -2 60 31 2 -2 2 62 -2 60 32 2 -2 ✫ ✪ HEP - NCSR Democritos

  7. ✬ ✩ + e 2 + W 10 _ ν 8 ✫ ✪ HEP - NCSR Democritos

  8. ✬ ✩ • Dirac algebra simplification: 2-dim vs 4-dim and chiral representation, including m f � = 0. • The sign factor: ǫ ( P 1 , P 2 ) → ǫ ( m 1 , m 2 ) we define ǫ ( m 1 , m 2 ) = ( − 1) χ ( m 1 ,m 2 )   i − 1 2 � �   χ ( m 1 , m 2 ) = m 1 i ˆ m 2 j ˆ i = n j =1 where hatted components are set to 0 if the corresponding external particle is a boson. • Full EWK theory, both Unitary and Feynman gauges. A. Denner, Fortsch. Phys. 41, 307 (1993). ✫ ✪ HEP - NCSR Democritos

  9. ✬ ✩ HELAC • Construction of the skeleton solution of the Dyson-Schwinger equations. At this stage only integer arithmetic is performed. This is part of the initialization phase. • Dressing-up the skeleton with momenta, provided by PHEGAS and wave functions, propagators, n -point functions in general. • Unitary and Feynman gauges implemented. Due to multi-precision arithmetic,tests of gauge invariance can be extended to arbitrary precision. • All fermions masses can be non-zero. • All Electroweak and QCD vertices are implemented, including Higgs and would-be Goldstone bosons. ✫ ✪ HEP - NCSR Democritos

  10. ✬ ✩ Colour Configuration - EWK ⊕ QCD ✫ ✪ HEP - NCSR Democritos

  11. ✬ ✩ Colour Configuration - EWK ⊕ QCD • Ordinary approach SU ( N )-type � A a 1 ...a n = Tr ( T a σ 1 . . . T a σn ) A ( σ 1 . . . σ n ) ✫ ✪ HEP - NCSR Democritos

  12. ✬ ✩ Colour Configuration - EWK ⊕ QCD • Ordinary approach SU ( N )-type � A a 1 ...a n = Tr ( T a σ 1 . . . T a σn ) A ( σ 1 . . . σ n ) � a σ ′ a σ ′ Tr ( T a σ 1 . . . T a σn ) Tr ( T 1 . . . T n ) C ij = ✫ ✪ HEP - NCSR Democritos

  13. ✬ ✩ Colour Configuration - EWK ⊕ QCD • Ordinary approach SU ( N )-type � A a 1 ...a n = Tr ( T a σ 1 . . . T a σn ) A ( σ 1 . . . σ n ) � a σ ′ a σ ′ Tr ( T a σ 1 . . . T a σn ) Tr ( T 1 . . . T n ) C ij = Quarks and gluons treated differently ✫ ✪ HEP - NCSR Democritos

  14. ✬ ✩ Colour Configuration - EWK ⊕ QCD ✫ ✪ HEP - NCSR Democritos

  15. ✬ ✩ Colour Configuration - EWK ⊕ QCD • New approach U ( N )-type Each color-configuration amplitude is proportional to D i = δ 1 ,σ i (1) δ 2 ,σ i (2) . . . δ n,σ i ( n ) where σ i represents the i -th permutation of the set 1 , 2 , . . . , n . ✫ ✪ HEP - NCSR Democritos

  16. ✬ ✩ Colour Configuration - EWK ⊕ QCD • New approach U ( N )-type Each color-configuration amplitude is proportional to D i = δ 1 ,σ i (1) δ 2 ,σ i (2) . . . δ n,σ i ( n ) where σ i represents the i -th permutation of the set 1 , 2 , . . . , n . ⋆ quarks 1 . . . n ⋆ antiquarks σ i (1 . . . n ) and ⋆ gluons = q ¯ q ✫ ✪ HEP - NCSR Democritos

  17. ✬ ✩ Colour Configuration - EWK ⊕ QCD • New approach U ( N )-type Each color-configuration amplitude is proportional to D i = δ 1 ,σ i (1) δ 2 ,σ i (2) . . . δ n,σ i ( n ) where σ i represents the i -th permutation of the set 1 , 2 , . . . , n . ⋆ quarks 1 . . . n ⋆ antiquarks σ i (1 . . . n ) and ⋆ gluons = q ¯ q � D i D j = N α C ij = α = � σ 1 , σ 2 � c , ✫ ✪ HEP - NCSR Democritos

  18. ✬ ✩ Colour Configuration - EWK ⊕ QCD • New approach U ( N )-type Each color-configuration amplitude is proportional to D i = δ 1 ,σ i (1) δ 2 ,σ i (2) . . . δ n,σ i ( n ) where σ i represents the i -th permutation of the set 1 , 2 , . . . , n . ⋆ quarks 1 . . . n ⋆ antiquarks σ i (1 . . . n ) and ⋆ gluons = q ¯ q � D i D j = N α C ij = α = � σ 1 , σ 2 � c , ♠ exact color treatment ⇒ low color charge Problem: number of colour connection configurations: ∼ n ! where n is the number of ✫ ✪ q pairs. ⇒ Monte-Carlo over continuous colour-space. gluons or q ¯ HEP - NCSR Democritos

  19. ✬ ✩ g g (i, σ i) σ i) δ σ (j, i j (j, σ j) g � EF = − i f abc t a AB t b CD t c 4( δ AD δ CF δ EB − δ AF δ CB δ ED ) δ 1 σ 2 δ 2 σ 3 δ 3 σ 1 ✫ ✪ HEP - NCSR Democritos

  20. ✬ ✩ _ q σ i) (0, g σ i) (i, (i,0) q � CD = 1 1 t a AB t b 2( δ AD δ CB − δ AB δ AC ) N c 1 √ 2 ✫ ✪ HEP - NCSR Democritos

  21. ✬ ✩ _ q (0, σ i) g δ i σ i (0,0) (i,0) q � CD = 1 1 t a AB t b 2( δ AD δ CB − δ AB δ AC ) N c 1 √ 2 N c ✫ ✪ HEP - NCSR Democritos

  22. ✬ ✩ (3,σ ) 3 (1,σ ) (2,σ ) 1 2 (4,σ ) 4 δ 1 σ 3 δ 3 σ 2 δ 2 σ 4 δ 4 σ 1 2 g 12 g 34 − g 13 g 24 − g 14 g 23 ✫ ✪ HEP - NCSR Democritos

  23. ✬ ✩ 1 The N c expansion � D i D j = N α C ij = c , α = � σ 1 , σ 2 � The leading term σ 1 = σ 2 , N n c The subleading terms: how many δ ’s survive after contraction, which in Combinatorial Analysis are known to be the Stirling numbers ( − ) n − m S ( m ) n where n is the number of ‘objects’ and m the number of ‘surviving’ δ ’s, called cycles. N c -term is related to n ( n − 1) 1 For instance the permutations ! 2 ✫ ✪ HEP - NCSR Democritos

  24. ✬ ✩ Summation/Integration over color ✫ ✪ HEP - NCSR Democritos

  25. ✬ ✩ Summation/Integration over color � Tr ( t a 1 . . . t a n ) A ( { p i } n M ( { p i } n 1 , { ε i } n 1 , { a i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) ✫ ✪ HEP - NCSR Democritos

  26. ✬ ✩ Summation/Integration over color � Tr ( t a 1 . . . t a n ) A ( { p i } n M ( { p i } n 1 , { ε i } n 1 , { a i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) � M ( { p i } n 1 , { ε i } n 1 , { I i , J i } n δ I 1 ,P ( J 1 ) . . . δ I n ,P ( J n ) A ( { p i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) ✫ ✪ HEP - NCSR Democritos

  27. ✬ ✩ Summation/Integration over color � Tr ( t a 1 . . . t a n ) A ( { p i } n M ( { p i } n 1 , { ε i } n 1 , { a i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) � M ( { p i } n 1 , { ε i } n 1 , { I i , J i } n δ I 1 ,P ( J 1 ) . . . δ I n ,P ( J n ) A ( { p i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) � 1 ) | 2 = g 2 n − 4 � � A i C ij A ∗ |M ( { p i } n 1 , { ε i } n 1 , { a i } n j { a i } n 1 { ε i } n ε ij 1 ✫ ✪ HEP - NCSR Democritos

  28. ✬ ✩ Summation/Integration over color � Tr ( t a 1 . . . t a n ) A ( { p i } n M ( { p i } n 1 , { ε i } n 1 , { a i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) � M ( { p i } n 1 , { ε i } n 1 , { I i , J i } n δ I 1 ,P ( J 1 ) . . . δ I n ,P ( J n ) A ( { p i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) � 1 ) | 2 = g 2 n − 4 � � A i C ij A ∗ |M ( { p i } n 1 , { ε i } n 1 , { a i } n j { a i } n 1 { ε i } n ε ij 1 � ∼ n ! P (2 ,...,n ) ✫ ✪ HEP - NCSR Democritos

  29. ✬ ✩ Summation/Integration over color � Tr ( t a 1 . . . t a n ) A ( { p i } n M ( { p i } n 1 , { ε i } n 1 , { a i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) � M ( { p i } n 1 , { ε i } n 1 , { I i , J i } n δ I 1 ,P ( J 1 ) . . . δ I n ,P ( J n ) A ( { p i } n 1 , { ε i } n 1 ) ∼ 1 ) P (2 ,...,n ) � 1 ) | 2 = g 2 n − 4 � � A i C ij A ∗ |M ( { p i } n 1 , { ε i } n 1 , { a i } n j { a i } n 1 { ε i } n ε ij 1 � ∼ n ! P (2 ,...,n ) � ∼ 3 n × 3 n ✫ ✪ { I i ,J i } n 1 HEP - NCSR Democritos

  30. ✬ ✩ ✫ ✪ HEP - NCSR Democritos

  31. ✬ ✩ The Dyson-Schwinger recursion equation for gluon in a general way can be written as follows: n � [ A µ ( P ); ( A, B )] = [ δ ( P − p i ) A µ ( p i ); ( A, B ) i ]+ i =1 � [ ( ig ) Π µ ρ V ρνλ ( P, p 1 , p 2 ) A ν ( p 1 ) A λ ( p 2 ) σ ( p 1 , p 2 ); ( A, B ) = ( C, D ) 1 ⊗ ( E, F ) 2 ] � [ ( g 2 ) Π µ σ G σνλρ ( P, p 1 , p 2 , p 3 ) A ν ( p 1 ) A λ ( p 2 ) A ρ ( p 3 ) σ ( p 1 , p 2 + p 3 ); − ( A, B ) = ( C, D ) 1 ⊗ ( E, F ) 2 ⊗ ( G, H ) 3 ] � ψ ( p 1 ) γ ν ψ ( p 2 ) σ ( p 1 , p 2 ); ( A, B ) = (0 , D ) 1 ⊗ ( C, 0) 2 ] ¯ [ ( ig ) Π µ + ν P = p 1 + p 2 ✫ ✪ where A, B, C, D, E, F, G, H = 1 , 2 , 3. HEP - NCSR Democritos

  32. ✬ ✩ L = − 1 4 F a µν F µνa , F a µν = ∂ µ A a ν − ∂ ν A a µ + gf abc A b µ A c ν L = − 1 µν H µνa + 1 2 H a 4 H a µν F µνa . ✫ ✪ HEP - NCSR Democritos

  33. ✬ ✩ n � [ A µ ( P ); ( A, B )] = [ δ ( P − p i ) A µ ( p i ); ( A, B ) i ]+ i =1 [ ( ig ) Π µ ρ V ρνλ ( P, p 1 , p 2 ) A ν ( p 1 ) A λ ( p 2 ) σ ( p 1 , p 2 ); ( A, B ) = ( C, D ) 1 ⊗ ( E, F ) 2 ] + [ ( ig ) Π µ σ ( g σλ g νρ − g νλ g σρ ) A ν ( p 1 ) H λρ ( p 2 ) σ ( p 1 , p 2 ); ( A, B ) = ( C, D ) 1 ⊗ ( E, F ) 2 ] + ψ ( p 1 ) γ ν ψ ( p 2 ) σ ( p 1 , p 2 ); ( A, B ) = (0 , D ) 1 ⊗ ( C, 0) 2 ] ¯ [ ( ig ) Π µ ν and � [ H µν ( P ); ( A, B )] = [ ( ig ) ( g µλ g νρ − g νλ g µρ ) A λ ( p 1 ) A ρ ( p 2 ) σ ( p 1 , p 2 ); P = p 1 + p 2 ( A, B ) = ( C, D ) 1 ⊗ ( E, F ) 2 ] . ✫ ✪ HEP - NCSR Democritos

  34. ✬ ✩ ✫ ✪ HEP - NCSR Democritos

  35. ✬ ✩ ( A, B ) = ( C, 0) ⊗ (0 , D ) = ( C, D ) w =1 , if C � = D. ✫ ✪ HEP - NCSR Democritos

  36. ✬ ✩ ( A, B ) = ( C, 0) ⊗ (0 , D ) = ( C, D ) w =1 , if C � = D. ( A, B ) = ( C, 0) ⊗ (0 , D ) = (1 , 1) w 1 ⊕ (2 , 2) w 2 ⊕ (3 , 3) w 3 , if C = D. ✫ ✪ HEP - NCSR Democritos

  37. ✬ ✩ ( A, B ) = ( C, 0) ⊗ (0 , D ) = ( C, D ) w =1 , if C � = D. ( A, B ) = ( C, 0) ⊗ (0 , D ) = (1 , 1) w 1 ⊕ (2 , 2) w 2 ⊕ (3 , 3) w 3 , if C = D. (1 , 0) ⊗ (0 , 1) = (1 , 1) 2 / 3 ⊕ (2 , 2) − 1 / 3 ⊕ (3 , 3) − 1 / 3 ✫ ✪ HEP - NCSR Democritos

  38. ✬ ✩ � � 2 n q n q − 1 n q − A − B � � � n q ! N CC = δ ( n q = A + B + C ) A ! B ! C ! A =0 B =0 C =0 ✫ ✪ HEP - NCSR Democritos

  39. ✬ ✩ � � 2 n q n q − 1 n q − A − B � � � n q ! N CC = δ ( n q = A + B + C ) A ! B ! C ! A =0 B =0 C =0 NALL NF Process NCC CC (%) CC gg → 2 g 6561 639 59.1 gg → 3 g 59049 4653 68.4 gg → 4 g 531441 35169 77.4 gg → 5 g 4782969 272835 85.0 gg → 6 g 43046721 2157759 90.4 gg → 7 g 387420489 17319837 94.0 gg → 8 g 3486784401 140668065 96.4 ✫ ✪ HEP - NCSR Democritos

  40. ✬ ✩ NALL NF Process NCC CC (%) CC gg → u ¯ u 729 93 93.5 gg → gu ¯ u 6561 639 91.6 gg → 2 gu ¯ u 59049 4653 92.6 gg → 3 gu ¯ u 531441 35169 94.6 gg → 4 gu ¯ u 4782969 272835 96.4 gg → 5 gu ¯ u 43046721 2157759 97.8 gg → 6 gu ¯ u 387420489 17319837 98.6 gg → c ¯ cc ¯ c 6561 639 99.1 gg → gc ¯ cc ¯ c 59049 4653 98.8 gg → 2 gc ¯ cc ¯ c 531441 35169 99.0 gg → 3 gc ¯ cc ¯ c 4782969 272835 99.3 gg → 4 gc ¯ cc ¯ c 43046721 2157759 99.6 ✫ ✪ HEP - NCSR Democritos

  41. ✬ ✩ Process σ MC ± ε (nb) ε (%) (0.53185 ± 0.01149) × 10 − 2 gg → 7 g 2.1 (0.33330 ± 0.00804) × 10 − 3 gg → 8 g 2.4 (0.17325 ± 0.00838) × 10 − 4 gg → 9 g 4.8 (0.38044 ± 0.01096) × 10 − 3 gg → 5 gu ¯ u 2.8 (0.95109 ± 0.02456) × 10 − 5 gg → 3 gc ¯ cc ¯ c 2.6 (0.81400 ± 0.02583) × 10 − 6 gg → 4 gc ¯ cc ¯ c 3.2 ✫ ✪ HEP - NCSR Democritos

  42. ✬ ✩ Process σ MC ± ε (nb) ε (%) (0.18948 ± 0.00344) × 10 − 3 gg → Zu ¯ ugg 1.8 gg → W + ¯ (0.62704 ± 0.01458) × 10 − 3 udgg 2.3 (0.16217 ± 0.00420) × 10 − 6 gg → ZZu ¯ ugg 2.6 gg → W + W − u ¯ (0.27526 ± 0.00752) × 10 − 5 ugg 2.7 d ¯ (0.38811 ± 0.00569) × 10 − 5 d → Zu ¯ ugg 1.5 d → W + ¯ (0.18765 ± 0.00453) × 10 − 5 d ¯ csgg 2.4 d ¯ (0.99763 ± 0.02976) × 10 − 7 d → ZZgggg 2.9 d → W + W − gggg (0.52355 ± 0.01509) × 10 − 6 d ¯ 2.9 ✫ ✪ HEP - NCSR Democritos

  43. ✬ ✩ d σ /dM jj 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 100 200 300 400 500 600 700 800 M jj Figure 1: Invariant mass distribution of 2 gluons in the gg → 5 g process. Solid line crosses denote SPHEL case whereas dashed, the ✫ ✪ Monte Carlo one. HEP - NCSR Democritos

  44. ✬ ✩ • SPHEL approximation based on MHV amplitudes � 1 ) | 2 = 2 g 2 n − 4 N n − 2 |M ( { p i } n 1 , { ε i } n 1 , { a i } n ( N 2 c − 1) × c a,ε 2 n − 2( n + 1) � � 1 ( p i · p j ) 4 ( p 1 · p 2 )( p 2 · p 3 ) . . . ( p n · p 1 ) , n ( n − 1) 1 ≤ i ≤ j ≤ n P (2 ,...,n ) ✫ ✪ HEP - NCSR Democritos

  45. ✬ ✩ Process t SPHEL t MC t MC /t SPHEL 0 . 372 × 10 − 3 0 . 519 × 10 − 1 gg → 2 g 139.52 0 . 776 × 10 − 3 0 . 135 × 10 0 gg → 3 g 173.97 0 . 252 × 10 − 2 0 . 364 × 10 0 gg → 4 g 144.44 0 . 122 × 10 − 1 0 . 143 × 10 1 gg → 5 g 117.21 0 . 806 × 10 − 1 0 . 497 × 10 1 gg → 6 g 61.66 0 . 639 × 10 0 0 . 133 × 10 2 gg → 7 g 20.81 0 . 569 × 10 1 0 . 334 × 10 2 gg → 8 g 5.87 0 . 567 × 10 2 0 . 923 × 10 2 gg → 9 g 1.63 0 . 620 × 10 3 0 . 267 × 10 3 gg → 10 g 0.43 ✫ ✪ HEP - NCSR Democritos

  46. ✬ ✩ The high-colour processes The idea is to replace colour summation with integration and then follow a MC approach � � 8 � √ iB − 1 G µ ǫ µ z iA z ∗ G a ( P i ) η a ( z ) = AB ( P i ) = 6 3 δ AB λ ( P i ) a =1 √ ψ A ( P i ) = 3 u ( P i ) z iA √ ¯ u ( P i ) z ∗ ψ A ( P i ) = 3 ¯ iA In such a representation the amplitude can be seen � M ( z 1 , z 2 , . . . ) = z 1 · z σ ( i ) 1 z 2 · z σ ( i ) 2 . . . A i ✫ ✪ HEP - NCSR Democritos

  47. ✬ ✩ and the MC is over � � � � 3 3 � � dz i dz ∗ z i z ∗ [ dz ] ≡ δ ( i − 1) i i =1 i =1 where � √ � � � � � √ B − 1 D − 1 z A z ∗ z C z ∗ [ dz ] G AB G CD = [ dz ] 6 3 δ AB 6 3 δ AB � � = 1 δ AD δ CB − 1 3 δ AB δ CD 2 ✫ ✪ HEP - NCSR Democritos

  48. ✬ ✩ Multi-jet processes Beyond any colour treatment a summation over different flavours is also needed. Up to now the most straightforward way was to count the distinct processes and then multiply with a multiplicity factor, i.e. process Flavour gg → ggg 1 q ¯ q → ggg 8 qg → qgg 8 qg → qgg 8 gg → q ¯ qg 5 q → q ¯ q ¯ qg 8 q ¯ q → r ¯ rg 32 qq → qqg 8 q ¯ r → q ¯ rg 24 qr → qrg 24 qg → qq ¯ q 8 qg → qr ¯ r 32 gq → qq ¯ q 8 ✫ gq → qr ¯ ✪ r 32 HEP - NCSR Democritos

  49. ✬ ✩ initial-state type distinct processes multiplicity factor A ( gg ) C 1 ( n ) χ ( n 0 , n 1 , . . . , n f ; f ) B ( q ¯ q ) C 2 ( n ) χ ( n 0 , n 2 , . . . , n f ; f − 1) C 2 ( n − 1) χ ( n 0 , n 2 , . . . , n f ; f − 1) C ( gq and qg ) D ( qq ) C 2 ( n − 2) χ ( n 0 , n 2 , . . . , n f ; f − 1) ( qq ′ and q ¯ q ′ ) E C 3 ( n − 2) χ ( n 0 , n 3 , . . . , n f ; f − 2) In order to clarify what we mean we consider the example of the type A initial state. Each distinct process is defined by an array ( n 0 , n 1 , . . . , n f ). For instance, in the case of four-jet production we have (4,0,0,0,0,0) gg → gggg (2,1,0,0,0,0) gg → ggq ¯ q (0,2,0,0,0,0) gg → q ¯ qq ¯ q (0,1,1,0,0,0) gg → q ¯ qr ¯ r ✫ ✪ HEP - NCSR Democritos

  50. ✬ ✩ � Θ( n 1 ≥ n 2 ≥ . . . ≥ n f ) C 1 ( n ) = n 0+2 n 1+ ... +2 nf = n � Θ( n 2 ≥ n 3 ≥ . . . ≥ n f ) C 2 ( n ) = n 0+2 n 1+ ... +2 nf = n and � C 3 ( n ) = Θ( n 3 ≥ n 4 ≥ . . . ≥ n f ) n 0+2 n 1+ ... +2 nf = n A distinct process, given by the array ( n 0 , n 1 , . . . , n f ) has a multiplicity factor : χ ( n 0 , n 1 , . . . , n f ; f ) = n f ( n f − 1) ... ( n f − j + 1) /j ! f � j = f if n i � = 0 i =1 f − 1 � j = f − 1 if n i � = 0 i =1 . . . j = 1 if n 1 � = 0 j = 0 otherwise ✫ ✪ HEP - NCSR Democritos

  51. ✬ ✩ Now we can think of a flavour-MC, so the wave function is multiplied by an � � f = � N f ( f 1 , f 2 , ... ) such that N f -dimensional array representing flavour , � f i f j = δ ij with a weight proportional to the relevant pdf for initial state flavours In that case a process like gg → ggq ¯ qq ¯ q will actually represent a plethora of processes. The number of distinct processes is now given by 9 k + 3 if n = 2 k and 9 k + 7 if n = 2 k + 1 # of jets 2 3 4 5 6 7 8 9 10 # of D-processes 12 16 21 24 30 34 39 43 48 # of dist.processes 10 14 28 36 64 78 130 154 241 total # of processes 126 206 621 861 1862 2326 4342 5142 8641 ✫ ✪ HEP - NCSR Democritos

  52. ✬ ✩ Multi-jet rates θ ij > 30 o | η i | < 3 p T i > 60 GeV, # jets 3 4 5 6 7 8 2.97 × 10 − 2 2.21 × 10 − 3 2.12 × 10 − 4 σ ( nb ) 91.41 6.54 0.458 % Gluon 45.7 39.2 35.7 35.1 33.8 26.6 A new code ⇒ JetI • anybody to tell us how many Feynman graphs in gg → 8 g ? • or gg → 2 g 3 u 3¯ u ? ✫ ✪ HEP - NCSR Democritos

  53. ✬ ✩ • Feynman graphs in gg → 8 g 10,525,900 !! • or gg → 2 g 3 u 3¯ u 946,050! ✫ ✪ HEP - NCSR Democritos

  54. ✬ ✩ PHEGAS • Phase space n �� � δ 3 �� � � d 3 p i d Φ n = (2 π ) 4 − 3 n E i − w δ p i � 2 E i i =1 • RAMBO , VEGAS -based nice but completely inefficient! dσ n = FLUX × |M 2 → n | 2 d Φ n need appropriate mappings of peaking structures, plus optimization! • Efficiency ⇒ to a large number of generators, each one for a specific class of processes. ✫ ✪ HEP - NCSR Democritos

  55. ✬ ✩ Multichannel approach � f ( � � x ) I = f ( � x ) dµ ( � x ) = x ) p ( � x ) dµ ( � x ) p ( � M ch M ch � � p ( � x ) = α i p i ( � x ) α i = 1 i =1 i =1 �� f ( � � � f ( � � � 2 x ) x ) E 2 N → − I 2 I → p ( � x ) p ( � x ) ⋆ Optimize α i ⇒ Minimize E ⋆ R.Kleiss and R.Pittau, Comput. Phys. Commun. 83, 141 (1994). ✫ ✪ HEP - NCSR Democritos

  56. ✬ ✩ New Dyson-Schwinger equations: subamplitude is a combination of several peaking structures! problem unsolved? QCD antennas P.D.Draggiotis, A.van Hameren and R.Kleiss, hep-ph/0004047. ✫ ✪ HEP - NCSR Democritos

  57. ✬ ✩ New Dyson-Schwinger equations: subamplitude is a combination of several peaking structures! problem unsolved? QCD antennas P.D.Draggiotis, A.van Hameren and R.Kleiss, hep-ph/0004047. Old Feynman graphs: exhibit single peaking structure! problem solved ✫ ✪ HEP - NCSR Democritos

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend