recursion operator for the narita itoh bogoyavlensky
play

Recursion operator for the Narita-Itoh-Bogoyavlensky lattice Jing - PowerPoint PPT Presentation

Recursion operator for the Narita-Itoh-Bogoyavlensky lattice Jing Ping Wang School of Mathematics and Statistics University of Kent Solitons, Collapses and Turbulence: Achievements, Developments and perspectives Novosibirsk, June 8,


  1. Recursion operator for the Narita-Itoh-Bogoyavlensky lattice Jing Ping Wang School of Mathematics and Statistics University of Kent “Solitons, Collapses and Turbulence: Achievements, Developments and perspectives“ Novosibirsk, June 8, 2012 1

  2. Evolutionary differential-difference equations u t = K ( u q , u q +1 , · · · u p ) , q, p ∈ Z , q ≤ j ≤ p u j = S j u ( n, t ) = u ( n + j, t ) u t = ∂ t u, The order of K is ( q, p ) is ∂ u q K∂ u p K � = 0 and its total order p − q . The Volterra Chain u t = u ( u 1 − u − 1 ) is of order ( − 1 , 1) with total order 2. 2

  3. Motivations • Integrable discretisation of integrable systems Example. The equation u t = u 2 ( u 2 u 1 − u − 1 u − 2 ) − u ( u 1 − u − 1 ) is of oder (-2,2) and it can be interpreted as the Sawada- Kotera equation U τ = U xxxxx + 5 UU xxx + 5 U x U xx + 5 U 2 U x under the following continuous limit at ǫ → 0: 3 + ǫ 2 9 ǫt, τ + 2 ǫ 5 u ( n, t ) = 1 9 U ( x − 4 135 t ) , x = ǫn. ( Alder: arXiv:11035139) 3

  4. • Generalised symmetry of discrete equations Example. The discrete Korteweg-de Vries equation ( u 1 , 1 − u 0 , 0 )( u 1 , 0 − u 0 , 1 ) = α − β possesses a generalised symmetry of order ( − 1 , 1) : 1 u τ = . u 1 , 0 − u − 1 , 0 This can be transformed into the modified Volterra chain v τ = v 2 ( v 1 − v − 1 ) , 1 where v = u 1 , 0 − u − 1 , 0 . 4

  5. • Classification problems are still open The following types have been classified: 1. Volterra type: u t = f ( u − 1 , u, u 1 ); 2. Toda type: u tt = f ( u t , u − 1 , u, u 1 ); 3. Relativistic Toda-Type: u t = f ( u 1 , u, v ) , v t = g ( v − 1 , v, u ) and u tt = f ( u 1 , u, u 1 ,t , u t ) − g ( u, u − 1 , u t , u − 1 ,t ) 5

  6. Complex of variational calculus U s = { u n | n ∈ Z } F s = { smooth functions of variables U s } [ g ] an equivalent class: g ≡ h ⇔ g − h ∈ Im ∆, ∆ = S− 1; F ′ s : the space of equivalent classes Lie algebra h : the space of evolutionary vector fields. [ ∂, S ]=0 ∂ ∂ k ∈ Z S k P · ∂ = � k ∈ Z h k · − → ∂ P = � ∂u k = ⇒ h ∂u k F ′ s is a h -module with a representation as follows: k ∈ Z ( S k P ) ∂g ∂u k ] , P ∈ h , g ∈ F ′ P ◦ g = [ ∂ P ( g )] = [ � s 6

  7. What is the space Ω n ? Ω 0 = F ′ s A natural non-degenerate pairing between ∂ P and k h k · d u k : a vertical 1-form ω = � h ( n ) S n P ] = < S − n h ( n ) , P > . � � < ω, P > = [ n ∈ Z n ∈ Z n S − n h ( n ) d u 0 = ⇒ Ω 1 ω → ξ · d u, ξ = � S − k ∂g d : Ω 0 → Ω 1 = � ⇒ δ ( g ) = ∂u k k 7

  8. Fr´ echet derivatives and Lie derivatives Def . For any objects in the complex O , its Fr´ echet derivative along a vector field P ∈ h is defined as D O [ P ] = d � � ǫ =0 O [ u + ǫP ] . � d ǫ Eg . For H = u ( S − S − 1 ) u , D H [ P ] = P ( S − S − 1 ) u + u ( S − S − 1 ) P . Thm . Let L K denote Lie derivative along K ∈ h . Then L K g = [ D g [ K ]] ∈ F ′ g ∈ F ′ for s ; → conserved density s L K h = [ K, h ] for h ∈ h ; → symmetry L K ξ = D ξ [ K ] + D ⋆ K ( ξ ) for ξ ∈ Ω 1 ; → cosymmetry L K R = D R [ K ] − D K R + R D K for R : h → h ; → recursion Op. K for H : Ω 1 → h ; → Hamiltonian L K H = D H [ K ] − D K H−H D ⋆ L K I = D I [ K ] + D ⋆ K I + I D K for I : h → Ω 1 . → symplectic 8

  9. All results related about concepts for evolutionary partial differential equations are valid for evolutionary differential-difference equations. A recursion operator of Volterra chain ℜ = u S + u + u 1 + u S − 1 + u t ( S − 1) − 1 1 u generating local symmetries of order ( − n, n ) , e.g. u t 1 = u ( u 1 − u − 1 ) u t 2 = uu 1 ( u + u 1 + u 2 ) − u − 1 u ( u − 2 + u − 1 + u ) · · · · · · 9

  10. Conservation laws A pair of functions ( ρ, σ ) is called a conservation law of an equation u t = K if � D t ρ = ( S − 1) σ � u t = K . � The functions ρ and σ are called the density and flux of the conservation law respectively. The Volterra chain u t = ( S − 1) � uu − 1 � ∂ t ln u = u t � u + u − 1 � u = u 1 − u − 1 = ( S − 1) · · · · · · 10

  11. Residues and Adler’s Theorem Consider Laurent formal difference series of order N A = a N S N + a N − 1 S N − 1 · · · The residue res( A ) and the logarithmic residue res ln( A ) are defined as res( A ) = a 0 , res ln( A ) = ln( a N ) . Adler’s Theorem Let A and B be two Laurent formal difference series of order N and M respectively. Then res[ A, B ] = ( S − 1 )( σ ( A, B )) , where N i M i S − k ( a − i ) S i − k ( b i ) − S − k ( b − i ) S i − k ( a i ) . � � � � σ ( A, B ) = i =1 i =1 k =1 k =1 11

  12. Infinitely many conserved densities Thm. Consider an equation u t = K . If there exists a series ℜ L such that D ℜ L [ K ] = [ D K , ℜ L ] , res( ℜ i L ) and res ln( ℜ L ) are its conserved densities. The Volterra chain u t ℜ L = u S + u + u 1 + u S − 1 + S − i � u − i i =1 ρ 0 = res ln( ℜ L ) = ln u ρ 1 res( ℜ L ) = u + u 1 ≡ 2 u L ) = 3 uu 1 + u 1 u 2 + u 2 + u 2 ρ 2 = res( ℜ 2 1 ≡ 4 uu 1 + 2 u 2 � D t ρ 2 = 4( S − 1)( u 2 u − 1 + u − 1 uu 1 ) � · · · · · · 12

  13. Bi-Hamiltonian structures u t = H 1 δ u f = H 2 δ u g, where H 1 , H 2 are Hamiltonian operators and δ u is the variational derivative. The Volterra chain ln u u t = H 1 δ u u = H 2 δ u 2 , H 1 = u ( S − S − 1 ) u, H 2 = ℜH 1 = u (1 + S − 1 )( S u − u S − 1 )(1 + S ) u . 13

  14. Narita-Itoh-Bogoyavlensky lattices (1980’s): p ∈ N p p � � u t = u ( u k − u − k ); k =1 k =1 p p � � v t = v ( v − k ); v k − k =1 k =1 p p w t = w 2 ( � � w k − w − k ) . k =1 k =1 p − 1 p � � u = and u = v k w k . k =0 k =0 For finite lattices, work has been done on Hamiltonian structures, associations with classical Lie algebras and the r -matrix structure etc (Suris, Nijhoff, Papageor- giou...). 14

  15. Discrete Sawada-Kotera equation (dSK) ( Alder: arXiv:11035139): u t = u 2 ( u 2 u 1 − u − 1 u − 2 ) − u ( u 1 − u − 1 ) • Tsujimoto and Hirota (1996): continuous limit of the reduced discrete BKP hierarchy. • Both u t ′ = u ( u 1 − u − 1 ) and u t ′′ = u 2 ( u 2 u 1 − u − 1 u − 2 ) are integrable, but do not commute. • Lax representation: L = ( S + u ) − 1 ( u S + 1) S 2 A = ( u − 1 S + 1 − u − 1 u − 2 + u − 2 S − 1 )( S − S − 1 ). 15

  16. Symmetries of dSK : u t := P 4 + P 2 u 2 ( u 1 u 2 2 u 3 u 4 + u 2 1 u 2 2 u 3 + uu 2 1 u 2 2 + u − 1 uu 2 1 u 2 − u − 2 u 2 − 1 uu 1 − u 2 − 2 u 2 − 1 u − u − 3 u 2 − 2 u 2 − 1 − u − 4 u − 3 u 2 − 2 u − 1 ) + · · · + u ( u 1 u 2 + u 2 1 + u 1 u − uu − 1 − u 2 − 1 − u − 1 u − 2 ) =: Q 7 + Q 5 + Q 3 ⇒ [ P 4 , Q 7 ] = 0; [ P 2 , Q 3 ] = 0 . = Cosymmetries: G 1 = 1 u , G 2 = u 1 u 2 + u 1 u − 1 + u − 1 u − 2 − 1 Questions : Hamiltonian strictures? Recursion opera- tors? The hierarchy dSK (Alder & Postnikov: arXiv:1107.2305) p − 1 p − 1 p p u t = u 2 ( � � � � u i − u − i ) − u ( u i − u − i ) i =1 i =1 i =1 i =1 16

  17. What was known? • p = 1: The Volterra chain • p = 2: Zhang, Tu, Oevel & Fuchssteiner (1991) u t = u ( u 2 + u 1 − u − 1 − u − 2 ) = u ( S 2 + S − S − 1 − S − 2 ) uδ u u has a recursion operator ℜ = u (1 + S − 1 + S − 2 )( S 2 u − u S − 1 )( u S − 1 − S u ) − 1 ( u S − 2 − S u )(1 − S − 2 ) − 1 u − 1 • For arbitrary p , the equation is Hamiltonian: p p S k − S − k ) uδ u u. � � u t = u ( k =1 k =1 17

  18. Main Results Thm. For any p ∈ N , a recursion operator of the Narita- Itoh-Bogoyavlensky lattice is p → p ( S p +1 − i u − u S − i )( S p − i u − u S − i ) − 1 . S − i ) � � ℜ = u ( i =0 i =1 It is a Hamiltonian equation with respect to → ( p − 1) p   ( S p +1 − i u − u S − i )( S p − i u − u S − i ) − 1 S − i ) � � ℜH = u (   i =0 i =1 p ( S u − u S − p )( S i ) u , � i =0 where H = u ( � p k =1 S k − � p k =1 S − k ) u . Indeed, 1 u t = p + 1 H δ u ln u . 18

  19. Example . When p = 2, the equation is bi-Hamiltonian. u t = u ( u 2 + u 1 − u − 1 − u − 2 ) = u ( S 2 + S − S − 1 − S − 2 ) uδ u u = u 3(1 + S − 1 + S − 2 )( S 2 u − u S − 1 )( S u − u S − 1 ) − 1 ( S u − u S − 2 )(1 + S + S 2 ) uδ u ln u = u (1 + S − 1 + S − 2 )( S 2 u − u S − 1 )( S u − u S − 1 ) − 1 ( u 1 − u ) = u (1 + S − 1 + S − 2 )( u 2 − u ) = u ( u 2 − u + u 1 − u − 1 + u − u − 2 ) 19

  20. Lax representation for Bogoyavlensky hierarchy B ( n ) = ( L ( p +1) n ) ≥ 0 L = S + u S − p , L t n = [ B ( n ) , L ] . Idea to construct a recursion operator : (Tu (’89); G¨ urses, Karasu & Sokolov (’99)) 1. Relate the difference operators B ( n ) : B ( n +1) = LB ( n ) + R with R is the reminder. 2. Find the relation between two flows corresponding to these two difference operators. 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend