reconstruction de formes en grandes dimensions
play

Reconstruction de formes en grandes dimensions Dominique Attali - PowerPoint PPT Presentation

Reconstruction de formes en grandes dimensions Dominique Attali Co-authors: Andr Lieutier, David Salinas Confrence Mathmatiques et Grandes Dimensions de la thorie aux dveloppements industriels 10 dcembre 2012 Lyon Shape


  1. Reconstruction de formes en grandes dimensions Dominique Attali Co-authors: André Lieutier, David Salinas Conférence Mathématiques et Grandes Dimensions de la théorie aux développements industriels 10 décembre 2012 Lyon

  2. Shape Approximation Simplicial complex n points Betti numbers Reconstruction Processing Volume Medial axis Signatures Input Output . . . 2

  3. in 2D in R 2 Medial axis n points Simplicial complex Reconstruction Processing Input Output 3

  4. in 2D in R 2 Medial axis n points Simplicial complex Reconstruction Processing (1995 – 2005) Building Heuristics (Crust, Power crust, Co-cone, Wrap, . . . ) Delaunay complex ✴ In R 2 , has size O ( n ) Empty circle property Delaunay of 10M points in 2D ≈ 10 s 4

  5. in 3D in R 3 Medial axis n points Simplicial complex Reconstruction Processing (1995 – 2005) Building (Crust, Power crust, Co-cone, Wrap, . . . ) Delaunay complex ✴ In R 3 , has size O ( n 2 ) ✴ In practice, has size O ( n ) Empty sphere property Delaunay of 10M points in 3D ≈ 80 s 5

  6. Shape in dD R d in R d n points Simplicial complex Betti numbers Reconstruction Processing Volume Medial axis Signatures . . . Building Delaunay complex curse of dimensionality ✴ In R d , has size O ( n � d/ 2 � ) ✴ The bound is tight (and achieved for points that sample curves). 6

  7. Shape in dD R d in R d n points Simplicial complex Betti numbers Reconstruction Processing Volume Medial axis Signatures . . . Delaunay complex Building / / / / / / / / / / / / / How to reconstruct without Delaunay? 7

  8. Shape in dD Guaranties on the result? R d in R d n points Simplicial complex Betti numbers Reconstruction Processing Volume Medial axis Signatures . . . Delaunay complex Building / / / / / / / / / / / / / How to reconstruct without Delaunay? 8

  9. How to reconstruct without building the whole Delaunay complex? witnesses Landmarks weak Delaunay triangulation [V. de Silva 2008] tangent plane tangential Delaunay complexes [J. D. Boissonnat & A. Ghosh 2010] Rips complexes our approach with André Lieutier and David Salinas 9

  10. Rips complexes α b a c Rips( P, α ) = { σ ⊂ P | Diameter( σ ) ≤ 2 α } Rips( P, α ) ⊃ Cech( P, α ) ✹ proximity graph connects every pair of points within G α 2 α ✹ [Flag G = largest complex whose 1-skeleton is G ] Rips( P, α ) = Flag G α ✹ compressed form of storage through the 1-skeleton ✹ easy to compute 10

  11. Overview Is it possible to find sampling conditions which guarantee? Shape ➋ ≈ ➊ � R d Point cloud in Rips complex Triangulation Reconstruction Simplification Can be high-dimensional! 11

  12. Simplification by iteratively applying elementary operations c Contraction b Edge contraction ab �→ c a Identifies vertices a and b to vertex c Preserves homotopy type if Lk( ab ) = Lk( a ) ∩ Lk( b ) The result may not be a flag complex anymore . . . ⇒ data structure = (1-skeleton, blocker set) = σ blocker of K iff dim σ ≥ 2 , ∀ τ � σ , τ ∈ K and σ �∈ K x x Collapse of a simplex σ Collapse ab b a Removes σ and its cofaces y y Preserves homotopy type if Lk( σ ) is a cone The result is a flag complex if σ a vertex or an edge 12

  13. Example Physical system Point cloud in R 128 2 Polygonal curve Rips complex Correct intrinsic dimension Correct homotopy type Is high-dimensional! 13

  14. Reconstruction theorems A Sampling conditions: ⇒ � = d H ( A, P ) < λ feature size( A ) Reconstruction( P, α ) P Input Output 14

  15. Reconstruction theorems A Sampling conditions: ⇒ � = d H ( A, P ) < λ feature size( A ) Reconstruction( P, α ) P Input Output 14

  16. Nerve � C , where C finite collection of sets If sets in C are convex Nerve Lemma. � � Nerve C = { η ⊂ C | η � = ∅} 15

  17. Cech complex P α = � B ( p, α ) α -o ff set of P p ∈ P α p Nerve Lemma. � Cech( P, α ) = Nerve { B ( p, α ) | p ∈ P } Can be high-dimensional! & expensive to compute 16

  18. Cech complex A P α � ? Nerve Lemma. � Cech( P, α ) P Reconstruction Input Output 17

  19. Shapes and Reach 18

  20. Shapes and Reach 18

  21. Shapes and Reach 19

  22. Shapes and Reach A m Medial Axis of A MedialAxis( A ) = { m ∈ R d | m has at least two closest points in A } Reach A = d ( A, MedialAxis( A )) 20

  23. Cech complex A P α [Niyogi Smale Weinberger 2004] deformation retracts to if √ d H ( A, P ) ≤ ε < (3 − 8) Reach A √ α = (2 + 2) ε Nerve Lemma. � Cech( P, α ) P Reconstruction Input Output 21

  24. Short proof R = Reach A � β = R − ( R − ε ) 2 − α 2 √ 2) ε } β < α − ε } = ε < (3 − 8) R α < R − ε P α deformation retracts to A β ⇒ ⇒ = √ α = (2 + P α x β A β y p p � A a α prove that � a − p � � ≤ β = ⇒ y lies between x and p � 22

  25. Short proof R = Reach A � β = R − ( R − ε ) 2 − α 2 R = Reach A P α z x β A β y ε A ε p p � A a α � p − p � � ≤ α } � z − p � 2 − � p − p � � 2 ≤ β � � z − p � ≥ R − ε � a − p � � = R − 23

  26. Rips complexes α b a c Rips( P, α ) = { σ ⊂ P | Diameter( σ ) ≤ 2 α } Rips( P, α ) ⊃ Cech( P, α ) ✹ proximity graph connects every pair of points within G α 2 α ✹ [Flag G = largest complex whose 1-skeleton is G ] Rips( P, α ) = Flag G α ✹ compressed form of storage through the 1-skeleton ✹ easy to compute 24

  27. Rips complexes with L ∞ When distances are measured using L ∞ b a α c Rips( P, α ) = { σ ⊂ P | Diameter( σ ) ≤ 2 α } = Rips( P, α ) Cech( P, α ) ✹ proximity graph connects every pair of points within G α 2 α ✹ [Flag G = largest complex whose 1-skeleton is G ] Rips( P, α ) = Flag G α ✹ compressed form of storage through the 1-skeleton ✹ easy to compute 25

  28. Rips complexes with L ∞ P + α B ∞ (0 , 1) A � ? Nerve Lemma. � = Rips( P, α ) Cech( P, α ) P Reconstruction Input Output easy to compute 26

  29. Minkowski sum P + αC A � ? compact where C = convex set 27

  30. Minkowski sum P + αC A � ? compact where C = convex set 28

  31. Minkowski sum P + αC A � ? compact where C = convex set 29

  32. Minkowski sum inclusion homotopy equivalence P + α C A if α 4 ε P ⊂ A ε and A ⊂ P + ε C Reach A small enough and and ε = 1 − ξ where C compact convex set that satisfies: (i) B (0 , 1) ⊂ C ⊂ δ B (0 , 1) for some δ ≥ 1; (“distortion” to unit ball) C is ( θ, κ )-round for θ = arccos( − 1 (ii) d ) and κ > 0; (“curvature”) (iii) C is ξ -eccentric for ξ < 1. (“distance” between � q ∈ Q ( q + C ) and Hull( Q )) excludes excludes n 1 b a C c 1 c 2 m a + C b + C n 2 30

  33. Minkowski sum inclusion homotopy equivalence P + α C A if α 4 ε P ⊂ A ε and A ⊂ P + ε C Reach A small enough and and ε = 1 − ξ ➊ d -balls satisfy (i) (ii) and (iii) for δ = 1, κ = 1 and ξ = 0. ➋ √ d -cubes satisfy (i) (ii) and (iii) for δ = d  1 � � cos π 4 + cos π if d = 2, √  12 2 2   1 if d = 3, = κ √ 6 1  if d ≥ 4,  √  ( d − 2) d ξ = 1 − 2 d 31

  34. Minkowski sum inclusion homotopy equivalence P + α C A if ε P ⊂ A ε and A ⊂ P + ε C α Reach A < λ and and ε = η Admissible values of ε and α are solutions of a system of equations that depends upon ( δ, κ , ξ ). C d λ η √ √ d -ball with [NSW04] ∀ d 3 - 8 ≈ 0 . 17 2 + 2 ≈ 3 . 41 d -ball with this proof ∀ d 0.077 3.96 2 0.04 4.04 3 0.01 6.14 4 0.004 8.18 d -cube 5 0.002 10.2 10 0.0002 20.23 [ Rips( P, α ) with � ∞ ] 100 0.0000002 200.23 32

  35. What now? ε ✺ The largest ratio Reach A that we get for Rips( P, α ) with � ∞ : ✺ Decreases quickly with d ✺ Is it tight? ✺ ➟ � ∞ � 2 33

  36. Rips complexes with L 2 A P α Cech( P, α ) Rips( P, α ) P ⊂ Input Output easy to compute 34

  37. Rips complexes with L 2 A P α Nerve Lemma � Cech( P, α ) Rips( P, α ) P ⊂ Input Output easy to compute 34

  38. Rips complexes with L 2 A P α deformation retracts to [NSW 04] Nerve Lemma � Cech( P, α ) Rips( P, α ) P ⊂ Input Output easy to compute 34

  39. Rips complexes with L 2 A P α deformation retracts to [NSW 04] Nerve Lemma � Cech( P, α ) Rips( P, α ) P ⊂ deformation retracts to ? Input Output easy to compute 34

  40. Rips complexes with L 2 A P α deformation retracts to [NSW 04] Nerve Lemma � Cech( P, α ) Rips( P, α ) P ⊂ deformation retracts to ? ≈ sphere � circle Rips and Cech complexes generally don’t share the same topology, but ... 35

  41. Roadmap P ϑ d α P α � � Cech( P, ϑ d α ) Cech( P, α ) Rips( P, α ) ⊂ ⊂ ≈ sphere � circle ≈ 5-ball � 2 d for ϑ d = d +1 36

  42. Roadmap P ϑ d α P α Find a condition under which the topology of ➊ { Cech( P, t ) } α ≤ t ≤ ϑ d α is “stable” � � sequence of collapses ? Cech( P, ϑ d α ) Cech( P, α ) Rips( P, α ) ⊂ ⊂ � 2 d for ϑ d = d +1 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend