reciprocal identities
play

Reciprocal Identities MHF4U: Advanced Functions Recall that the - PDF document

t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s Reciprocal Identities MHF4U: Advanced Functions Recall that the three primary trigonometric ratios are sin , cos and tan . The three secondary


  1. t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s Reciprocal Identities MHF4U: Advanced Functions Recall that the three primary trigonometric ratios are sin θ , cos θ and tan θ . The three secondary ratios are csc θ , sec θ and cot θ . Since the secondary ratios are reciprocals of the primary ratios, they are often called the reciprocal ratios. Review of Basic Trigonometric Identities This relationship gives us three trigonometric identities . J. Garvin Reciprocal Identities 1 For any value of θ , the reciprocal identities are csc θ = sin θ , 1 1 sec θ = cos θ and cot θ = tan θ . These identities can be used to prove that one trigonometric expression is equivalent to another. J. Garvin — Review of Basic Trigonometric Identities Slide 1/17 Slide 2/17 t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s Proofs Using Reciprocal Identities Pythagorean Identity Example Let P be any point on a unit circle. Prove that sin θ · csc θ = 1. LHS = sin θ · csc θ 1 = sin θ · sin θ = sin θ sin θ By the Pythagorean Theorem, x 2 + y 2 = 1. = 1 Since x = cos θ and y = sin θ , x 2 + y 2 = cos 2 θ + sin 2 θ = 1. = RHS Pythagorean Identity For any value of θ , sin 2 θ + cos 2 θ = 1. J. Garvin — Review of Basic Trigonometric Identities J. Garvin — Review of Basic Trigonometric Identities Slide 3/17 Slide 4/17 t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s Proofs Using the Pythagorean Identity Proofs Using the Pythagorean Identity Example Example Prove that sin 2 θ + 4 cos 2 θ = − 3 sin 2 θ + 4. Prove that 1 + sin 2 θ − cos 2 θ = sin θ . 2 sin θ LHS = sin 2 θ + 4 cos 2 θ LHS = 1 + sin 2 θ − cos 2 θ = sin 2 θ + 4(1 − sin 2 θ ) 2 sin θ = sin 2 θ + 4 − 4 sin 2 θ = sin 2 θ + sin 2 θ = − 3 sin 2 θ + 4 2 sin θ = 2 sin 2 θ = RHS 2 sin θ = sin θ = RHS J. Garvin — Review of Basic Trigonometric Identities J. Garvin — Review of Basic Trigonometric Identities Slide 5/17 Slide 6/17

  2. t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s Tangent and Cotangent Identities Proofs Using Tangent and Cotangent Identities Let P be any point on a unit circle. Example Prove that sin θ · cot θ = cos θ . LHS = sin θ · cot θ = sin θ · cos θ sin θ = cos θ x , tan θ = sin θ Since tan θ = y cos θ . = RHS tan θ , cot θ = cos θ 1 Since cot θ = sin θ . Tangent and Cotangent Identities For any value of θ , tan θ = sin θ cos θ and cot θ = cos θ sin θ . J. Garvin — Review of Basic Trigonometric Identities J. Garvin — Review of Basic Trigonometric Identities Slide 7/17 Slide 8/17 t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s General Rules For Proving Identities Proofs Using the Basic Identities While there is no specific procedure for proving a Example trigonometric identity, the following general rules may help. Prove that cos θ · cot θ + csc θ = cos 2 θ + 1 . sin θ • Try to simplify, rather than expand, when possible. • Replace all instances of tan θ , cot θ , sec θ and csc θ with sin θ and cos θ . • DO NOT “move” terms or factors across an = sign, LHS = cos θ · cot θ + csc θ since this presupposes that the identity is true. = cos θ · cos θ 1 sin θ + • If necessary, work on both sides of an identity sin θ = cos 2 θ 1 simultaneously and meet somewhere in the middle. sin θ + sin θ = cos 2 θ + 1 sin θ = RHS J. Garvin — Review of Basic Trigonometric Identities J. Garvin — Review of Basic Trigonometric Identities Slide 9/17 Slide 10/17 t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s Proofs Using the Basic Identities Using the Conjugate Recall that ( x − y )( x + y ) = x 2 − y 2 , a difference of squares. Example Prove that sec 2 θ − 1 = tan 2 θ . We say that x − y is the conjugate of x + y , and vice versa. Similarly, (1 − sin θ )(1 + sin θ ) = 1 − sin 2 θ (also a difference of squares), which simplifies to cos 2 θ . LHS = sec 2 θ − 1 When trying to simplify rational expressions involving cos 2 θ − cos 2 θ 1 1 ± sin θ or 1 ± cos θ , it is often useful to use the conjugate = cos 2 θ and apply the Pythagorean Identity. = 1 − cos 2 θ cos 2 θ = sin 2 θ cos 2 θ = tan 2 θ = RHS J. Garvin — Review of Basic Trigonometric Identities J. Garvin — Review of Basic Trigonometric Identities Slide 11/17 Slide 12/17

  3. t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s Using the Conjugate Factoring Trigonometric Expressions Example Another useful technique is to factor trigonometric identities, similar to how other binomials and trinomials are factored. 1 + sin θ = 1 − sin θ cos θ Prove that . cos θ If a rational expression contains the same factor in both its numerator and its denominator, then that factor can be cancelled out, leaving an equivalent expression. cos θ LHS = All of the standard factoring techniques (common, simple, 1 + sin θ complex, perfect squares, differences of squares) may apply, 1 + sin θ · 1 − sin θ cos θ = and more than one method of factoring may be required. 1 − sin θ = (cos θ )(1 − sin θ ) 1 − sin 2 θ = (cos θ )(1 − sin θ ) cos 2 θ = 1 − sin θ cos θ = RHS J. Garvin — Review of Basic Trigonometric Identities J. Garvin — Review of Basic Trigonometric Identities Slide 13/17 Slide 14/17 t r i g o n o m e t r i c i d e n t i t i e s t r i g o n o m e t r i c i d e n t i t i e s Factoring Trigonometric Expressions Factoring Trigonometric Expressions Example Example Prove that sin 2 θ − cos 2 θ Prove that cos 3 θ + cos 2 θ = cos θ + 1. = − sin θ − cos θ . 1 − sin 2 θ cos θ − sin θ LHS = sin 2 θ − cos 2 θ LHS = cos 3 θ + cos 2 θ cos θ − sin θ 1 − sin 2 θ = (sin θ + cos θ )(sin θ − cos θ ) = (cos 2 θ )(cos θ + 1) cos θ − sin θ 1 − sin 2 θ = − (sin θ + cos θ )(cos θ − sin θ ) = (cos 2 θ )(cos θ + 1) cos θ − sin θ cos 2 θ = − (sin θ + cos θ ) = cos θ + 1 = − sin θ − cos θ = RHS = RHS J. Garvin — Review of Basic Trigonometric Identities J. Garvin — Review of Basic Trigonometric Identities Slide 15/17 Slide 16/17 t r i g o n o m e t r i c i d e n t i t i e s Questions? J. Garvin — Review of Basic Trigonometric Identities Slide 17/17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend