binomial arrays and generalized vandermonde identities
play

Binomial Arrays and Generalized Vandermonde Identities Robert W. - PowerPoint PPT Presentation

Binomial Arrays and Generalized Vandermonde Identities Robert W. Donley, Jr. (CUNY-QCC) March 27, 2019 Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 1 / 37 Table of Contents 1 Catalan


  1. Binomial Arrays and Generalized Vandermonde Identities Robert W. Donley, Jr. (CUNY-QCC) March 27, 2019 Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 1 / 37

  2. Table of Contents 1 Catalan Numbers 2 Catalan Number Trapezoids 3 Pascal’s Triangle 4 Generalized Binomial Transform and Inverse 5 Binomial Arrays 6 Generalized Chu-Vandermonde Convolution 7 Hockey Stick Rules 8 New(-ish) Sequences Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 2 / 37

  3. Binomial Coe ffi cients Non-negative numerator For n � 0 and 0  k  n , ✓ n ◆ n ! = k k !( n � k )! Negative numerator For n � 1 and k � 0 , ✓ � n ◆ ✓ n + k � 1 ◆ = ( � 1) k k k In all other cases, ✓ n ◆ = 0 k Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 3 / 37

  4. Catalan Numbers C n Segner’s Recurrence for C n C 0 = 1 , and, for n � 1 , n X C n +1 = C i C n � i . i =0 Interpret: C n +1 = ( C 0 , C 1 , . . . , C n ) · ( C n , C n � 1 , . . . , C 0 ) . Direct Definition For n � 1 , ✓ 2 n 1 ✓ 2 n ◆ = 1 ◆ C n = n + 1 n + 1 n n Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 4 / 37

  5. Catalan Numbers C n C 0 = 1 C 1 = 1 · 1 = 1 C 2 = (1 , 1) · (1 , 1) = 2 C 3 = (1 , 1 , 2) · (2 , 1 , 1) = 5 C 4 = (1 , 1 , 2 , 5) · (5 , 2 , 1 , 1) = 14 C 5 = (1 , 1 , 2 , 5 , 14) · (14 , 5 , 2 , 1 , 1) = 42 1 , 1 , 2 , 5 , 14 , 42 , 132 , 429 , 1430 , 4862 , 16796 , . . . Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 5 / 37

  6. Interpretation Stanley’s List (2015): Over 200 examples as enumeration Euler: C n is the number of triangulations of a regular ( n + 2)-gon C n is the number of ordered lists with ( n + 1) +s and n � s such that all partial sums are positive. C 0 : + C 1 : + + � C 2 : + + + � � , + + � + � C 3 : + + + + � � � , + + + � + � � , + + + � � + � , + + � + � + � , + + � + + � � Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 6 / 37

  7. Shapiro’s Catalan Triangle Shapiro’s Catalan triangle for B n , k n \ k 1 2 3 4 5 6 1 1 2 2 1 3 5 4 1 4 14 14 6 1 5 42 48 27 8 1 6 132 165 110 44 10 1 ✓ 2 n ◆ B n , k = k n � k n B n , k = B n � 1 , k � 1 + 2 B n � 1 , k + B n � 1 , k +1 Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 7 / 37

  8. Shapiro’s Catalan Triangle Shapiro’s Catalan triangle for B n , k n \ k 1 2 3 4 5 6 1 1 2 2 1 3 5 4 1 4 14 14 6 1 5 42 48 27 8 1 6 132 165 110 44 10 1 Shapiro (1976): Dot product of any row with itself or two (adjacent) rows is another Catalan number Examples: (2 , 1 , 0 , 0) · (14 , 14 , 6 , 1) = 28 + 14 + 0 + 0 = 42 , (14 , 14 , 6 , 1) · (14 , 14 , 6 , 1) = 196 + 196 + 36 + 1 = 429 . Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 8 / 37

  9. Kirillov-Melnikov’s Catalan triangle (1996) 2 3 1 1 1 1 1 1 1 1 1 · · · � 1 0 1 2 3 4 5 6 7 · · · 6 7 6 7 0 � 1 � 1 0 2 5 9 14 20 · · · 6 7 6 7 6 0 0 � 1 � 2 � 2 0 5 14 28 · · · 7 6 7 6 7 0 0 0 � 1 � 3 � 5 � 5 0 14 · · · 6 7 6 7 0 0 0 0 � 1 � 4 � 9 � 14 � 14 · · · 4 5 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Rule: 1 (1 , � 1 , 0 , 0 , . . . ) down left column, 2 1s along top row, and 3 capital L -summation to progress to the right. Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 9 / 37

  10. Dot Product Rule 2 3 1 1 1 1 1 1 1 1 1 · · · -1 0 1 2 3 4 5 6 7 · · · 6 7 6 7 0 � 1 � 1 0 2 5 9 14 20 · · · 6 7 6 7 0 0 � 1 -2 � 2 0 5 14 28 · · · 6 7 6 7 6 0 0 0 -1 � 3 -5 � 5 0 14 · · · 7 6 7 6 7 0 0 0 0 � 1 -4 � 9 � 14 -14 · · · 4 5 · · · · · · · · · · · · 0 � 1 · · · · · · · · · · · · To recover/extend Shapiro’s formulas, 1 columns are skew-palindromes, and 2 use convolution (Segner’s Rule) to align correctly. (1 , 3 , 2 , � 2 , � 3 , � 1) · ( � 1 , � 3 , � 2 , 2 , 3 , 1) = � 2(14) (1 , 2 , 0 , � 2 , � 1 , 0) · ( � 4 , � 5 , 0 , 5 , 4 , 1) = � 2(14) Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 10 / 37

  11. Shifting Columns for Dot Product Start with any column; convolution gives � 2 C n Unchanged if we telescope inwards or outwards (1 , 3 , 2 , � 2 , � 3 , � 1) · ( � 1 , � 3 , � 2 , 2 , 3 , 1) = � 28 (1 , 2 , 0 , � 2 , � 1 , 0) · ( � 4 , � 5 , 0 , 5 , 4 , 1) = � 28 (1 , 1 , � 1 , � 1 , 0 , 0) · ( � 9 , � 5 , � 1 , 1 , 5 , 9) = � 28 (1 , 0 , � 1 , 0 , 0 , 0) · ( � 14 , 0 , 14 , 14 , 6 , 1) = � 28 (1 , � 1 , 0 , 0 , 0 , 0) · ( � 14 , 14 , 0 , 0 , 0 , 0) = � 2(14) Point of talk: Explain this phenomenon in a general setting. Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 11 / 37

  12. Pascal’s Triangle 2 1 1 1 1 1 1 1 1 1 · · · 3 0 1 2 3 4 5 6 7 8 · · · 6 7 6 7 0 0 1 3 6 10 15 21 28 · · · 6 7 6 7 0 0 0 1 4 10 20 35 56 · · · 6 7 6 7 0 0 0 0 1 5 15 35 70 · · · 6 7 6 7 0 0 0 0 0 1 6 21 28 · · · 4 5 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Rule: 1 (1 , 0 , 0 , . . . ) down left column, 2 1s along top row, and 3 capital L -summation to progress to the right. Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 12 / 37

  13. Chu-Vandermonde Convolution 2 3 1 1 1 1 1 1 1 1 1 · · · 0 1 2 3 4 5 6 7 8 · · · 6 7 6 7 0 0 1 3 6 10 15 21 28 · · · 6 7 6 7 6 7 0 0 0 1 4 10 20 35 56 · · · 6 7 6 7 0 0 0 0 1 5 15 35 70 · · · 6 7 6 7 0 0 0 0 0 1 6 21 28 · · · 4 5 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (1 , 3 , 3 , 1) · (1 , 3 , 3 , 1) = (1 , 2 , 1 , 0) · (4 , 6 , 4 , 1) = (1 , 1 , 0 , 0) · (10 , 10 , 5 , 1) = (1 , 0 , 0 , 0) · (20 , 15 , 6 , 1) = 20 . Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 13 / 37

  14. Chu-Vandermonde Convolution This is just the famous Chu-Vandermonde convolution ◆ ✓ n k ✓ m + n ◆ ✓ m ◆ X = k � i . k i i =0 Suppose X = A [ B is a disjoint union with | A | = m and | B | = n . If we choose k elements from X , the summation expresses this choice with respect to independent choices from A and B . In fact, one may allow negative m or n . Lagrange: k ◆ 2 ✓ 2 n ◆ ✓ n X = . k i i =0 Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 14 / 37

  15. Generalized Binomial Transform 1 X a i x i { a i } 1 i =0 ! p ( x ) = i =0 Generalized Binomial Transform n ✓ n ◆ X B n a k = a k , n = a k � i i i =0 1 1 B n a k x k = (1 + x ) n X X a i x i i =0 k =0 ✓ n ◆ B n a n = a n , n = P n Usual binomial transform: a n � i i =0 i Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 15 / 37

  16. Pascal’s Recurrence n = 1 : Ba k = a k � 1 + a k n = 2 : B 2 a k = a k � 2 + 2 a k � 1 + a k n = 3 : B 3 a k = a k � 3 + 3 a k � 2 + 3 a k � 1 + a k Pascal’s Recurrence (Capital L) B n +1 a k = B n a k + B n a k � 1 Pascal’s Identity ✓ n + 1 ◆ ✓ n ◆ ✓ ◆ n = + k � 1 k k Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 16 / 37

  17. Matrix Implementation 1 Fourth quadrant matrix 2 { a i } down first column, a 0 along first row 3 Pascal’s recurrence: Capital- L summation 2 · · · 3 a 0 a 0 a 0 a 0 a 0 a 0 + a 1 2 a 0 + a 1 3 a 0 + a 1 4 a 0 + a 1 · · · a 1 6 7 6 7 a 2 a 1 + a 2 a 0 + 2 a 1 + a 2 3 a 0 + 3 a 1 + a 2 6 a 0 + 4 a 1 + a 2 · · · 6 7 6 7 a 2 + a 3 a 1 + 2 a 2 + a 3 · · · · · · · · · a 3 4 5 · · · · · · · · · · · · · · · · · · B n a k : row k + 1, column n + 1 (first row and column indexed to 0) Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 17 / 37

  18. Pascal’s triangle ✓ n ◆ B n a k = a i = (1 , 0 , 0 , . . . ) ! k 1 1 1 1 1 1 1 · · · 2 3 0 1 2 3 4 5 6 · · · 6 7 6 7 PT = 0 0 1 3 6 10 15 · · · 6 7 6 7 0 0 0 1 4 10 20 · · · 4 5 · · · · · · · · · · · · · · · · · · · · · · · · 1 " : Sums to 2 n 2 % : Sums to F n (Fibonacci numbers) 3 Hockey Stick Summation : 1 + 2 + 3 + 4 + 5 = 15 Robert W. Donley, Jr. (CUNY-QCC) Binomial Arrays and Generalized Vandermonde Identities March 27, 2019 18 / 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend