recent results prospects
play

recent results & prospects Evgueni Goudzovski (University of - PowerPoint PPT Presentation

Kaon experiments at CERN: recent results & prospects Evgueni Goudzovski (University of Birmingham) Outline: 1) K decay experiments at CERN: NA48/2, NA62-R K , NA62 2) NA62 status and data quality 3) Recent results from Birmingham-led


  1. Kaon experiments at CERN: recent results & prospects Evgueni Goudzovski (University of Birmingham) Outline: 1) K  decay experiments at CERN: NA48/2, NA62-R K , NA62 2) NA62 status and data quality 3) Recent results from Birmingham-led analyses 4) Conclusions Particle physics seminar University of Birmingham  2 November 2016 0

  2. Energy & precision frontiers Discovery of a Higgs boson : success of the Standard Model (SM) No roadmap and “guaranteed discoveries” any longer: a data -driven era Limitations of the SM: “New physics” extensions: SM matter  5% of total mass-energy undiscovered particles Searches for New physics: two complementary approaches Precision (intensity) frontier Energy frontier (LHC) Low-energy observables: Direct production of new particles tests of precise SM predictions in high-energy collisions. for rare or forbidden processes. A collective effort A unique effort 1 E. Goudzovski / Birmingham, 2 November 2016

  3. The precision frontier: kaon physics The kaon:  One of the lightest unstable particles (discovered in 1947); the “ minimal flavour laboratory ”.  High production rates: high statistical precision. An example of rare K decay measurement: BR(K L  e + e  ) = (9  5)×10  12 . (BNL E871)  Essential in establishing the foundations of particle physics (quark mixing, CPV).  Current focus: searches for new physics Example: with rare and forbidden decays. Tree-level process: X g X g X For and , 2 E. Goudzovski / Birmingham, 2 November 2016

  4. Kaon physics facilities BNL CERN IHEP Protvino E865, E777, E787, E949 NA48, NA62 , LHCb ISTRA+, OKA, KLOD FNAL LNF KEK/J-PARC KTeV KLOE, KLOE-2 E391a, KOTO , TREK A variety of experimental techniques: K decay-in-flight (e.g. at CERN), stopped K + ,  factory 3 E. Goudzovski / Birmingham, 2 November 2016

  5. Kaon experiments at CERN 4 E. Goudzovski / Birmingham, 2 November 2016

  6. Kaon programme at CERN Earlier: NA31 1997:  ’/  : K L +K S 1998: K L +K S Jura mountains France 1999: K L +K S K S HI NA48 NA48/NA62: discovery 2000: K L only K S HI centre of the LHC Switzerland SPS of direct CPV 2001: K L +K S K S HI LHC NA48/1 2002: K S /hyperons 2003: K + /K − NA48/2 2004: K + /K − N Geneva airport 2007: K  e2 /K   2 tests NA62 R K phase 2008: K  e2 /K   2 tests 2014: pilot run NA62 Kaon decay in flight experiments. 2015  : data taking NA62: currently ~200 participants, ~30 institutions 5 E. Goudzovski / Birmingham, 2 November 2016

  7. K  decay experiments at CERN Experiment NA48/2 NA62 (R K phase) NA62 (K  ) (K  ) (K + ) 2003  2004 2007  2008 2015  2018 Data taking period Beam momentum, GeV/c 60 74 75 RMS momentum bite, GeV/c 2.2 1.4 0.8 Spectrometer thickness, X 0 2.8% 2.8% 1.8% Spectrometer P T kick, MeV/c 120 265 270 M(K     +   ) resolution, MeV/c 2 1.7 1.2 0.8 K decays in fiducial volume 2×10 11 2×10 10 1.2×10 13 Main trigger multi-track; Min.bias + K  + … K     0  0 e  The NA48 detector The NA62 experiment New detector  Main goal: collect 100 SM K +  +  decays, BR SM =(9.11  0.72)×10  11 . Buras et al., JHEP 1511 (2015) 033 +1.15  Current K +  +  experimental status: BR = (1.73 )  10  10 from  1.05 7 candidates with expected background of 2.6 observed by BNL-E949. 6 PRL101 (2008) 191802 E. Goudzovski / Birmingham, 2 November 2016

  8. NA48/2 and NA62-R K experiments 2003 – 2007: charged kaon beams, the NA48 detector Narrow momentum band K  beams: P K = 60 (74) GeV/c ,  P K /P K ~ 1% (rms).  Maximum K  decay rate ~100 kHz ;  NA48/2: six months in 2003  04;  NA62-R K : four months in 2007. Principal subdetectors:  Magnetic spectrometer (4 DCHs) 4 views/DCH: redundancy  efficiency;  p/p = 0.48% ⨁ 0.009%p [GeV/c] (in 2007)  Scintillator hodoscope (HOD) Fast trigger, time measurement ( 150ps ).  Liquid Krypton EM calorimeter (LKr) Vacuum High granularity, quasi-homogeneous; beam pipe  E /E = 3.2%/E 1/2 ⨁ 9%/E ⨁ 0.42% [GeV];  x =  y =4.2mm/E 1/2 ⨁ 0.6mm ( 1.5mm@10GeV ). 7 E. Goudzovski / Birmingham, 2 November 2016 Beam

  9. The NA62 experiment Un-separated hadron (p/  + /K + ) beam. Total length: ~270m 400GeV SPS protons (10 12 /spill); K + : 75GeV/c ( ± 1%), divergence < 100  rad. SAV: 800MHz beam rate  45MHz K + rate  Small Angle Photon Veto 5MHz K + decays in fiducial volume Vacuum tank GTK: beam NA62UK Hodoscope spectrometer KTAG Vacuum: p<10 – 5 mbar (Cherenkov kaon tagger) Anti- <80ps timing counters Beam <80ps timing pipe Decay region: L=65m  Expected single event sensitivities: ~10  12 for K  decays, ~10  11 for  0 decays.  Kinematic rejection factors (limited by beam pileup and tails of MCS): 5×10 3 for K +  +  0 , 1.5×10 4 for K  +  .  Hermetic photon veto: ~10 8 suppression of  0  .  Particle ID (RICH+LKr+MUV): ~10 7 muon suppression. 8 E. Goudzovski / Birmingham, 2 November 2016

  10. Rare kaon decays: K  SM: box and penguin diagrams SM branching ratios Ultra-rare decays with Buras et al., JHEP 1511 (2015) 033 the highest CKM suppression: BR SM  10 11 Mode A ~ (m t /m W ) 2 |V ts V td | ~  5 * K +  +  (  ) 9.11  0.72 K L  0  3.00  0.31  Hadronic matrix element is related The uncertainties are largely to a measured quantity ( K +  0 e +  ). parametric (CKM)  SM precision surpasses any other FCNC process involving quarks. Theoretically clean,  Measurement of |V td | complementary almost unexplored, to those from B  B mixing or B 0  . sensitive to new physics. 9 E. Goudzovski / Birmingham, 2 November 2016

  11. K  : experiment vs theory CKM unitarity triangle with kaons BR(K L  0  ) vs BR(K +  +  ) Current experimental uncertainty (littlest Higgs D. Straub with T parity ) CKM 2010 NA62 aim: collect O(100) SM K +  +  decays with <20% background in 3 years of data taking using a novel decay-in-flight technique. Signature: high momentum K + ( 75GeV/c )  low momentum  + ( 15  35 GeV/c ). max detected K + decays/proton ( p K /p 0  0.2 ); Advantages: efficient photon veto ( >40 GeV missing energy) Un-separated beam ( 6% kaons)  high rates, additional background sources. 10 E. Goudzovski / Birmingham, 2 November 2016

  12. NA62 physics programme  NA62 Run 2 (2015  2018) : focused on the “golden mode” K +  +  .  Trigger bandwidth for other physics is limited.  Several measurements at nominal SES~10  12 : K +  + A’ ,  0  .  A few measurements do not require extreme SES: K +  ℓ +  H , …  In general, limited sensitivities to rare/forbidden decays ( SES~10  10 to ~10  11 , similar to NA48/2 and BNL-E865).  A proof of principle for a broad rare/forbidden decay programme.  NA62 Run 3 (2021  2024) : programme is under discussion. [Presented at “Physics Beyond C olliders” workshop, CERN, Sep 2016] Existing apparatus, different trigger logic: no capital investment .  Rare/forbidden K + and  0 decays at SES~10  12 :  K + physics: K +  + ℓ + ℓ  , K +  +  ℓ + ℓ  , K +  ℓ +  , K +  +  , …  0 physics:  0  e + e  ,  0  e + e  e + e  ,  0  3  ,  0  4  , … Searches for LFV/LNV: K +   ℓ + ℓ + , K +  +  e ,  0  e , … Possibly K L rare decays ( SES~10  11 ), including K L  0 ℓ + ℓ  [CPV].   Dump mode: hidden sector searches (long-lived HNL, DP , ALP). 11 E. Goudzovski / Birmingham, 2 November 2016

  13. The lepton programme Neutrino oscillations discovery (1998) e   + First non-SM phenomenon: 1) Lepton Flavour Violation;  e 2) non-zero neutrino mass. Neutrino source Neutrino detector New physics scenarios involving LFV : #  Neutrino is a Majorana fermion (identical to antineutrino)  Heavy (possibly sterile) neutrino states Astrophysical consequences:  Dark matter, nucleosynthesis, Supernova evolution, ...  Birmingham-led programme (supported by ERC starting grant): search for forbidden states with lepton pair ( ee ,  ,  e ) 12 E. Goudzovski / Birmingham, 2 November 2016

  14. NA62 status & data quality 13 E. Goudzovski / Birmingham, 2 November 2016

  15. Data collection K +  +  +   signal (2016) Rare decay: BR~10  7  Minimum bias ( ~1% intensity) and K  test data collected in 2015  Most systems commissioned and meet the design requirements  Beam time in 2016 : 3 May  14 November .  running at ~35% of the nominal intensity now (limited by SPS capability)  Long (~6 months) runs scheduled in 2017 and 2018 . Expect to reach a few SM K  events sensitivity with 2016 data 14 E. Goudzovski / Birmingham, 2 November 2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend