rare kaon decays at na62
play

Rare kaon decays at NA62 Evgueni Goudzovski (University of - PowerPoint PPT Presentation

Rare kaon decays at NA62 Evgueni Goudzovski (University of Birmingham) on behalf of the CERN-NA62 collaboration Outline: 1) The NA62 experiment at CERN 2) Measurement of the K + + decay 3) Searches for lepton number/flavour


  1. Rare kaon decays at NA62 Evgueni Goudzovski (University of Birmingham) on behalf of the CERN-NA62 collaboration Outline: 1) The NA62 experiment at CERN 2) Measurement of the K +  +  decay 3) Searches for lepton number/flavour violating K + decays 4) Searches for HNL production in K + decays 5) Summary CLFV 2019 conference Fukuoka, Japan  18 June 2019 0

  2. Kaon programme at CERN Earlier: NA31 1997:  ’/  : K L +K S 1998: K L +K S Jura mountains France 1999: K L +K S K S HI NA48 NA48/NA62: discovery 2000: K L only K S HI ECN3 hall Switzerland SPS of direct CPV 2001: K L +K S K S HI LHC NA48/1 2002: K S /hyperons 2003: K + /K − NA48/2 2004: K + /K − N Geneva airport 2007: K  e2 /K   2 tests NA62 R K run 2008: K  e2 /K   2 tests Main NA62 goal: K +  +  measurement to 10% precision 2015: commissioning NA62 with a novel decay-in-flight technique. 2016  18: physics run Currently ~200 participants from 31 institutions. 1 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  3. NA62 collaboration, Beamline & detector JINST 12 (2017) P05025 Hadronic Un-separated hadron (p/  + /K + ) beam. LAV: large-angle Calorimeter Muon SPS protons: 400 GeV , nominally 3.3 × 10 12 /spill. photon veto (12 stations) (HAC) detector K + : 75 GeV/c ( ± 1%), divergence < 100  rad.  t =70ps (MUV) Nominal beam rate: 750 MHz, K + rate 45 MHz; ~5 MHz K + decays in fiducial volume Dump GTK: beam tracker 300 m 3 O(10  6 ) mbar KTAG: Cherenkov kaon tagger,  t =70ps Small-angle Spectrometer: Anti-counters photon veto straw chambers LKr EM calorimeter Z [m]  Currently, 1 year of operation  2× 10 18 protons on target; 3×10 12 K + decays.  Single event sensitivities for K + decays: down to BR~10  12 .  Kinematic rejection factors: 1×10  3 for K +  +  0 , 3×10  4 for K  +  .  Hermetic photon veto:  0  decay suppression (for E  0 >40 GeV ) = 3×10  8 .  Particle ID (RICH+LKr+HAC+MUV): ~10  8 muon suppression. 2 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  4. NA62 data collection  Commissioning run 2015 : minimum bias data ( ~3×10 10 protons/pulse).  Physics run 2016 (30 days, ~1.3×10 12 ppp ): 10 11 useful K + decays.  Physics run 2017 (161 days, ~2.0×10 12 ppp ): ~2×10 12 useful K + decays.  Physics run 2018 (217 days, ~2.3×10 12 ppp ): expect 3×10 12 useful K + decays.  Resuming data taking after Long Shutdown 2 in 2021 . 3 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  5. K +  +  measurement: first result and prospects Result based on the 2016 data: Phys. Lett. B791 (2019) 156 4 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  6. Rare kaon decays: K  SM: box and penguin diagrams SM branching ratios Ultra-rare decays with Buras et al., JHEP 1511 (2015) 033 the highest CKM suppression: BR SM  10 11 Mode A ~ (m t /m W ) 2 |V ts V td | ~  5 * K +  +  (  ) 8.4  1.0 K L  0  3.4  0.6  SM precision surpasses any other FCNC process involving quarks. The uncertainties are largely parametric (CKM)  Measurement of |V td | complementary to those from e.g. B  B mixing. Theoretically clean,  Main focus of kaon physics: measurement almost unexplored, of both K +  +  and K L  0  decays. sensitive to new physics. 5 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  7. Status of theory and experiment BR(K L  0  ) vs BR(K +  +  ) CKM unitarity triangle with kaons Current experimental uncertainty (  1  ) NP with CKM-like flavour structure  Kaon measurements alone can fully constrain the unitarity triangle.  Complementary to B physics in the description of NP flavour dynamics. 6 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  8. K  signal region definition 2 =(P K  P  ) 2 vs track momentum Main K + decay modes m miss DATA 2016 ( >90% of BR) rejected K +  +  +   kinematically. K +  +  0  0 Resolution on m miss 2 :  =1.0  10  3 GeV 4 /c 2 . Measured kinematical Region II K +  +  0 background suppression:  K +  +  0 : 1×10 − 3 ;  K +  +  : 3×10 − 4 . Region I Further background K +  +  suppression:  PID (calorimeters & Cherenkov detectors):  suppression 10  8 .  Hermetic photon veto: suppression of  0  decays 3×10  8 . 7 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  9. Data 2016 K +  +  +   region PLB791 (2019) 156 Blinded Region 2  Data sample: 30 days at 1.3×10 12 ppp . K +  +   Number of kaon decays: region K +  +  0 Blinded N K = (1.21  0.02 syst )×10 11 . region 2016 data Region 1  Background estimates are mostly data-driven.  Signal acceptance: A  = (4.0  0.1)% .  Single-event sensitivity: SES = (3.15  0.24)×10  10 . 8 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  10. Result 2016 K +  +  +   region The RICH ring for the track y [mm] K +  +  region K +  +  0 region 2016 data   e One K +  +  candidate observed: BR(K +  +  ) < 11×10  10 at 90% CL. x [mm] PLB791 (2019) 156 +1.15 BNL-E949 ( K + decay at rest): BR(K +  +  ) = (1.73 )  10  10  1.05 SM prediction: BR(K +  +  ) = (0.84  0.10)×10  10  The NA62 decay-in-flight technique works.  A non-trivial result obtained with  2% of the total statistics collected. 9 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  11. K +  +  : next steps (CERN SPSC open session, 2 April 2019) Analysis of the 2017 data  Data sample: 161 days at 2.0×10 12 ppp .  Analysis procedure is similar to the 2016 one.  Number of kaon decays: N K = (1.3  0.1)×10 12 .  Single-event sensitivity: SES = (3.4  0.4)×10  11 .  Expected signal: 2.5  0.4 SM K +  +  events.  Expected background : 0.76  0.10 events, excluding upstream decays.  Result expected later this year, surpassing present best sensitivity. Analysis of the 2018 data  The largest sample collected so far: 217 days at 2.3×10 12 ppp .  Analysis procedure being optimized to improve acceptance. Further data collection necessary to reach the 10% precision  Data taking will resume after LS2 (in 2021 ).  Developing a strategy to collect 100 SM events by 2024 .  Possible beam dump operation ( 3 months of data taking = 10 18 pot ): competitive searches for hidden sector (long-lived HNL, DP , ALP). 10 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  12. K L  0  vs K +  +  : prospects KOTO 2015 data: BR<3.0×10  9 @90% CL PRL122 (2019) 021802 KOTO sensitivity with 2015  18 data. Expect result in 2019. KOTO sensitivity goal following beam & detector upgrades (~2025?) NA62 precision by 2025 (with 100 SM events) 11 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  13. Searches for lepton flavour and lepton number violation  Downscaled di-lepton trigger chains are in operation.  First results based on 80% of the 2017 data: CERN-EP-2019-104, arXiv:1905.07770, submitted to PLB.  Analyses completed so far: searches for K +   ℓ + ℓ + decays. 12 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  14. Backgrounds and PID Pion mis-ID probability vs momentum  Major background for 3-track decays: the K +  +  +   decay ( BR=5.6% ).  Studied with data-driven methods and dedicated simulations.  Background to decays into leptons: 1) via      decays in flight; 2) via   misidentification as e  .  Pion/electron identification: 1) by energy deposit in LKr ( E/p ); 2) by the RICH signal pattern. 13 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  15. K +   e + e + : auxiliary selection LNV selection: m(   e + e + ) SM selection: m(  + e + e  ) K +  +  +   K +  +  +   Signal region K +  +   e +  K +  +   e +  K +  +  0 D Auxiliary selection: LKr only is used for pion/electron ID  Validation of the background estimates using control mass regions.  Sensitivity is limited by K +  +  0 D background.  Therefore RICH is used for positron ID ( 10% loss of SES, 6 times lower background)… E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  16. K +   e + e + : main selection LNV selection: m(   e + e + ) SM selection: m(  + e + e  ) Signal region K +  +   e +  K +  [e + e   ]  0 e +  SES = (0.94  0.03)×10  10 Candidates observed: 2484 BR(K +  + e + e  ) = (3.00  0.09)×10  7 Expected background: 0.16  0.03 evt K + decays in FV: (2.14  0.07)×10 11 Candidates observed: 0 Result: BR(K +   e + e + )<2.2×10  10 at 90% CL 15 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

  17. Search for K +    +  + decay LNV selection: m(    +  + ) SM selection: m(  +  +   ) Signal region K +  +  +   K +  +  +   Signal region K +  +    +  K +  +    +  Candidates observed: 8357 SES = (1.28  0.04)×10  11 Background: 0.07% Expected background: 0.91  0.41 evt BR(K +  +  +   ) = (0.962  0.025)×10  7 Candidates observed: 1 K + decays in FV: (7.94  0.23)×10 11 16 E. Goudzovski / CLFV 2019, Fukuoka, 18 June 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend