recent results from the lhcf experiment
play

Recent results from the LHCf experiment Gaku Mitsuka (Nagoya - PowerPoint PPT Presentation

Recent results from the LHCf experiment Gaku Mitsuka (Nagoya University) on behalf of the LHCf Collaboration ISMD2012 16-21 September 2012, Jan Kochanowski University, Kielce 1 Outline Keywords: (Ultra high energy) Cosmic rays LHC


  1. Recent results from the LHCf experiment Gaku Mitsuka (Nagoya University) on behalf of the LHCf Collaboration ISMD2012 16-21 September 2012, Jan Kochanowski University, Kielce 1

  2. Outline Keywords: • (Ultra high energy) Cosmic rays • LHC • Forward particle productions • Introduction and Physics motivation • Analysis results - Photon analyses at √ s=900GeV and 7TeV - π 0 analysis at √ s=7TeV • Conclusions and Future prospects 2

  3. K.Fukatsu, Y.Itow, K.Kawade, T.Mase, K.Masuda, Y.Matsubara, G.Mitsuka, K.Noda,T.Sako, K.Suzuki, K.Taki Solar-Terrestrial Environment Laboratory, Nagoya University Y.Muraki(Spokes person) K.Kasahara, M.Nakai, Y.Shimizu, S.Torii K.Yoshida Konan University Waseda University Shibaura Institute of Technology T.Tamura Kanagawa University Totally ~30 collaborators O.Adriani, L.Bonechi, M.Bongi, R.D’Alessandro, M.Grandi, H.Menjo, P .Papini, S.Ricciarini, G.Castellini, A. Viciani INFN, Univ. di Firenze A.Tricomi INFN, Univ. di Catania A-L.Perrot W.C.Turner CERN LBNL, Berkeley M.Haguenauer J.Velasco, A.Faus Ecole Polytechnique IFIC, Centro Mixto CSIC-UVEG 3

  4. Energy spectra of high energy cosmic rays 4 10 -1 Standard (i.e. widely believed) model sr GeV sec) LEAP - satellite Proton - satellite 2 10 2 (1 particle/m -sec) Yakustk - ground array ] 1.4 Tibet&QGSJET Haverah Park - ground array 29 eV 10 KASCADE&QGSJET -1 Akeno - ground array 10 − 1 AGASA, E 0.80 × sr HiRes I/II 2 AGASA - ground array Flux (m − 1 Auger SD&FD, E × 1.15 Fly's Eye - air fluorescence yr 28 galactic (E =Z × 4.5 PeV) 10 − 2 c -4 HiRes1 mono - air fluorescence 10 proton J(E) [km helium HiRes2 mono - air fluorescence CNO 10 Z 24 ≤ ≤ HiRes Stereo - air fluorescence Z 25 ≥ -7 10 Auger - hybrid 27 10 2.4 Scaled flux E Knee -10 10 2 (1 particle/m -year) 26 10 14TeV -13 10 0.9TeV 25 10 -16 15 16 18 19 20 17 10 10 10 10 10 10 10 Energy [eV/particle] Extragalactic source (M. Unger ECRS 2008) -19 10 7TeV Ankle -22 10 2 (1 particle/km -year) Direct Indirect Energy, Composition, & direction -25 10 → Source of cosmic ray 2 (1 particle/km -century) -28 10 → Structure of the universe (goal) 9 10 13 15 16 18 19 20 11 12 14 17 10 10 10 10 10 10 10 10 10 10 10 10 Energy (eV) 4

  5. Indirect measurement of cosmic rays • It is not possible to directly* measure cosmic rays above 10 14 eV, but possible γ p Fe indirectly using the cascade shower of daughter particles, i.e. Extensive Air- Shower(EAS). Altitude [km] • Composition and energy of cosmic rays a fg ect the generation of EAS. X max • Then understanding of high-energy cosmic ray owes to the indirect technique: comparison between the MC simulation of EAS and observation. • Largest systematic uncertainty of indirect measurement is caused by the finite Radius [km] understanding of the hadronic interaction of cosmic ray in atmosphere. * direct measurement of cosmic ray <10 14 eV is done by balloon, satellite, and ISS. 5

  6. Hadronic interactions for CR physics CERN-LHCC-2006-004, 2008 JINST 3 S08006. Many models exist for CR physics • QGSJET (S. Ostapchenko) • EPOS (K. Werner and T. Pierog) • etc... which address on (semi-hard) soft-QCD. What should be measured by LHCf ?? 1. Energy spectra of γ , π 0 and n → Shower shape and µ at ground. 2. p T spectra → Shower lateral distribution at ground. 3. E CMS (in)dependence of the spectra → Predictive power in UHE region. 4. Nuclear e fg ects → Cosmic ray interaction is NOT p-p. 6

  7. The LHCf detectors • p-p collision at √ s=14TeV corresponds to Arm1 E lab =10 17 eV (~ extra-galactic source). • Detectors are located at the best position to measure the large energy flow that strongly contributes the air-shower development. 140m • √ s=900GeV and 7TeV in 2009-2010 pA collisions in 2013. [TeV] Arm2 2 p-p@14TeV η dE/d 1.5 10(W)cm x 10cm(H) x 30cm(D) Sampling calorimeter, 44X 0 , 1.6 λ 1 Silicon strip detector 0.5 Arm2 ATLAS/CMS LHCf/ZDC RPs CASTOR 0 -15 -10 -5 0 5 10 15 1ch~160 µ m η 7

  8. Photon event analyses Large tower π 0 , η , etc. γ Small tower ( η >~10) IP Large tower (8.8< η <9.5) π 0 , η , etc. γ Small tower IP 8

  9. Photon analysis at √ s=900GeV PLB 715 (2012) 293-303. Combined data (Arm1 and Arm2) vs MC simulations • None of interaction models perfectly reproduce the LHCf data. • EPOS and SIBYLL(x~2) show a reasonable agreement with the LHCf data. • DPMJET, QGSJET and PYTHIA are in good agreement E γ <200GeV, but harder above 200GeV → E CMS dependent or independent ? 9

  10. Photon analysis at √ s=7TeV PLB 703 (2011) 128–134. Combined data (Arm1 and Arm2) vs MC simulations -3 -3 10 10 /GeV /GeV ine ine -4 -4 LHCf s =7TeV LHCf s =7TeV 10 10 Events/N Events/N Gamma-ray like Gamma-ray like -5 -5 10 10 ° ° > 10.94, = 360 8.81 < < 8.99, = 20 η Δ φ η Δ φ -6 -6 10 10 -7 -7 10 10 ∫ ∫ -8 -1 -8 -1 Data 2010, Ldt=0.68+0.53nb Data 2010, Ldt=0.68+0.53nb 10 10 Data 2010, Stat. + Syst. error Data 2010, Stat. + Syst. error DPMJET 3.04 DPMJET 3.04 -9 -9 10 10 QGSJET II-03 QGSJET II-03 SIBYLL 2.1 SIBYLL 2.1 -10 EPOS 1.99 -10 EPOS 1.99 10 10 PYTHIA 8.145 PYTHIA 8.145 MC/Data MC/Data 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 Energy[GeV] Energy[GeV] • Again, none of interaction models perfectly reproduce the LHCf data. • EPOS has the smallest η -dependence relative to the LHCf data. • QGSJET and SIBYLL show the somewhat large dependent on η . • Tendencies at 900GeV are mostly same as 7TeV except for QGSJET and SIBYLL. 10

  11. π 0 event analysis γ Large tower π 0 γ (8.9<y<11.0) Small tower IP 500 1 Events / (1 MeV) Events / (0.02) [GeV/c] LHCf-Arm1 True EPOS s =7TeV ∫ -1 LHCf-Arm1 3 0.9 -2 LHCf-Arm1 s =7TeV, Ldt=2.53nb 10 10 Unfolded(by π 0 +EPOS) 9.0 < y < 11.0 9.0 < y < 9.2 400 Unfolded(by π 0 +PYTHIA) 0.8 True spectra T E=3TeV p Measured spectra 0.7 LHCf-Arm1 Unfolded spectra(by UE-EPOS) √ s=7TeV 300 Unfolded spectra(by UE-PYTHIA) 2 -3 10 0.6 10 9.0<y<11.0 E=2TeV 0.5 200 0.4 0.3 -4 10 10 E=1TeV 100 Measured EPOS 0.2 0.1 0 80 100 120 140 160 180 0 -5 1 10 0 0.1 0.2 0.3 0.4 0.5 0.6 9 9.5 10 10.5 11 Reconstructed m [MeV] P [GeV] Rapidity γ γ T 11

  12. π 0 analysis at √ s=7TeV Submitted to PRD (arXiv:1205.4578). MC simulations vs Combined spectra (Arm1 and Arm2 data) ] ] ] -2 -2 -2 [GeV [GeV [GeV 0 0 0 LHCf s =7TeV LHCf s =7TeV LHCf s =7TeV π π π 1 1 1 8.9 < y < 9.0 9.0 < y < 9.2 9.2 < y < 9.4 3 3 3 /dp /dp /dp ∫ ∫ ∫ -1 -1 -1 Ldt=2.53+1.90nb Ldt=2.53+1.90nb Ldt=2.53+1.90nb σ σ σ -1 -1 -1 10 10 10 3 3 3 Ed Ed Ed inel inel inel σ σ σ 1/ 1/ 1/ Data 2010 -2 -2 -2 10 10 10 DPMJET 3.04 QGSJET II-03 -3 -3 -3 SIBYLL 2.1 10 10 10 EPOS 1.99 PYTHIA 8.145 -4 -4 -4 10 10 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 p [GeV] p [GeV] p [GeV] T T T ] ] ] -2 -2 -2 [GeV [GeV [GeV 0 0 0 LHCf s =7TeV LHCf s =7TeV LHCf s =7TeV π π π 1 1 1 9.4 < y < 9.6 9.6 < y < 10.0 10.0 < y < 11.0 3 3 3 /dp /dp /dp ∫ -1 ∫ -1 ∫ -1 Ldt=2.53+1.90nb Ldt=2.53+1.90nb Ldt=2.53+1.90nb σ σ σ -1 -1 -1 10 10 10 3 3 3 Ed Ed Ed inel inel inel σ σ σ 1/ 1/ 1/ -2 -2 -2 10 10 10 -3 -3 -3 10 10 10 -4 -4 -4 10 10 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 p [GeV] p [GeV] p [GeV] T T T • LHCf data are mostly bracketed among hadronic interaction models. • DPMJET, SIBYLL(x2) and PYTHIA are apparently harder, while QGSJET2 is softer. 12

  13. π 0 analysis at √ s=7TeV Submitted to PRD (arXiv:1205.4578). MC simulations / Combined spectra (Arm1 and Arm2 data) 5 5 5 MC/Data MC/Data MC/Data 0 0 0 LHCf s =7TeV π LHCf s =7TeV π LHCf s =7TeV π 4.5 4.5 4.5 DPMJET 3.04 8.9 < y < 9.0 9.0 < y < 9.2 9.2 < y < 9.4 4 4 4 QGSJET II-03 SIBYLL 2.1 3.5 ∫ -1 3.5 ∫ -1 3.5 ∫ -1 Ldt=2.53+1.90nb Ldt=2.53+1.90nb Ldt=2.53+1.90nb EPOS 1.99 3 3 3 PYTHIA 8.145 2.5 2.5 2.5 2 2 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 p [GeV] p [GeV] p [GeV] T T T 5 5 5 MC/Data MC/Data MC/Data 0 0 0 LHCf s =7TeV LHCf s =7TeV LHCf s =7TeV π π π 4.5 4.5 4.5 9.4 < y < 9.6 9.6 < y < 10.0 10.0 < y < 11.0 4 4 4 3.5 3.5 3.5 ∫ -1 ∫ -1 ∫ -1 Ldt=2.53+1.90nb Ldt=2.53+1.90nb Ldt=2.53+1.90nb 3 3 3 2.5 2.5 2.5 2 2 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 0.4 0.5 0.6 p [GeV] p [GeV] p [GeV] T T T • EPOS agrees well with the data among all models here. • QGSJET allows only one quark exchange in collision → leading is always baryon. 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend