recent results from nemo 3 experiment
play

Recent Results from NEMO 3 Experiment Typical 2 events ~ every 1.5 - PowerPoint PPT Presentation

Recent Results from NEMO 3 Experiment Typical 2 events ~ every 1.5 minutes Search for 0 events Study neutrino mass H. Ohsumi (Saga U.) @ US-Japan Seminar, September 16-20, 2005, Maui, Hawaii NEMO3 Collaboration NEMO3 Collaboration


  1. Recent Results from NEMO 3 Experiment Typical 2νββ events ~ every 1.5 minutes Search for 0νββ events Study neutrino mass H. Ohsumi (Saga U.) @ US-Japan Seminar, September 16-20, 2005, Maui, Hawaii

  2. NEMO3 Collaboration NEMO3 Collaboration CENBG, IN2P3-CNRS Bordeaux University, France Charles University , Praha, Czech Republic CTU , Praha, Czech Republic INEL , Idaho Falls, USA INR , Moscow, Russia IReS , IN2P3-CNRS Strasbourg University, France ITEP , Moscou, Russia JINR , Dubna, Russia Jyvaskyla University, Finland LAL , IN2P3-CNRS Paris-Sud University, France LSCE , CNRS Gif sur Yvette, France LPC , IN2P3-CNRS Caen University, France Manchester University, Great-Britain Mount Holyoke College, USA RRC kurchatov Institute , Moscow, Russia Saga university , Saga, Japon UCL , London, Great-Britain

  3. PLAN PLAN • Introduction • NEMO3 � description, performances � results 2 β 2 ν � results 2 β 0 ν : data phase 1 1.08 year � fight against radon • SuperNEMO (if I have time …a little bit) • Concluding Remarks

  4. Philosophy of NEMO experiment Philosophy of NEMO experiment Neutrinoless Double Beta Decays ( 0νββ) Majorana ν and effective mass <m ν > ? or new physics (SUSY) ? Measure several isotopes ( 0νββ, 2νββ) 100 Mo(~7kg) , 82 Se(~1kg) , 130 Te , 116 Cd, 96 Zr , 48 Ca , 150 Nd Tag and measure all the BG events e - , e + , γ , α , neutron → Tracking chamber+Calorimeter+B-field+Shields “zero background zero background” ” experiment experiment “ 2νββ 0 νββ : 2n → 2p+2e - (∆ L = 2 Process) (Beyond Standard Model) 0νββ (?) 2 νββ : 2n → 2p+2e - +2 ν (Standard Process) ν M E( β 1 + β 2 ) Q ββ

  5. < m > from values of < ν > Expected values of m ν from neutrinos oscillations neutrinos oscillations parameters parameters Expected Pascoli and Petcov, hep-ph/0310003 (best fit ν atm + ν sol ) Search Region of NEMO 3 Quasi-Degenerate (QD): < m ν > > 50 meV Inverted Hierarchy (IH): 15 meV < < m ν > < 50 meV Normal Hierarchy (NH): < m ν > < 5 meV 2 β could give the absolute neutrino mass (hep-ph/0503246 A.Strumia and F.Vissani)

  6. The Location of the NEMO3 The Location of the NEMO3 Frejus Underground NEMO 3 is here ! Laboratory Laboratoire Souterraine de Modane(LSM) (4800 m.w.e.) Italy France NEMO 3

  7. The NEMO3 detector The NEMO3 detector Fréjus Underground Laboratory : 4800 m.w.e. Source : 10 kg of ββ isotopes cylindrical, S = 20 m 2 , e ~ 60 mg/cm 2 Tracking detector : drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H 2 O Calorimeter : 1940 plastic scintillators coupled to low radioactivity PMTs Magnetic field: 25 Gauss Gamma shield: Pure Iron (e = 18cm) Neutron shield: 30 cm water (ext. wall) 40 cm wood (top and bottom) (since march 2004: water + boron) Able to identify e − , e + , γ and α

  8. AUGUST 2001

  9. Cathodic rings Wire chamber PMTs Calibration tube Calibration Source scintillators 207 Bi 2e – (IC) lines ~0.5 ,~1 MeV 90 Sr ββ isotope foils 60 Co

  10. How detect signals and tag the background ? Identification of e, γ , α B=25G � Tracking (Identification e/others) source foil Signal Delayed (<700 µ s) α track ∆ t ~ 0 ns β - β - � Calorimeter ε ( γ )~50% (@0.5MeV) ββ (0 ν ) decay Possible for tagging e γ , e γγ , e γγγ , … γ Internal background Source contaminations ∆ t ~ 0 ns � Time of flight σ t ~300ps(@1MeV) e - β - α External Background rejection ∆ t ~ 0 ns β - � Magnetic Field (Identification e - /e + ) β - ββ (2 ν ) decay 3~5% e - /e + confusion @ 1~7MeV External background ∆ t ≥ 3 ns e - Study of Background Process « Crossing e - » γ � 214 Bi Tagged by e( γ ) α (~164 µ s) γ e - n ∆ t ~ 0 ns ( 214 Bi-> 214 Po-> 210 Pb) e + or e - � 208 Tl e γ , e γγ , e γγγ , with γ (2.6MeV) e + e pairs - or Taggd by e( γ ) α (~300ns) Double Compton Compton + Möller ( 212 Bi-> 212 Po-> 208 Pb) � Neutron Crossing e (4~8MeV)

  11. ββ decay isotopes in NEMO ββ decay isotopes in NEMO- -3 detector 3 detector 05 04 06 03 ββ2ν measurement 02 07 116 Cd 405 g 08 01 Q ββ = 2805 keV 96 Zr 9.4 g 09 00 Q ββ = 3350 keV 150 Nd 37.0 g 19 10 Q ββ = 3367 keV 18 11 48 Ca 7.0 g Q ββ = 4272 keV 17 12 130 Te 454 g 13 16 14 15 Q ββ = 2529 keV External bkg 100 Mo 6.914 kg 82 Se nat Te 491 g 0.932 kg measurement Q ββ = 3034 keV Q ββ = 2995 keV Cu 621 g ββ0ν search (All the enriched isotopes produced in Russia)

  12. Sources preparation

  13. NEMO-3 Opening Day, July 2002 Start taking data 14 February 2003 Water tank wood coil Iron shield

  14. ββ events selection in NEMO ββ events selection in NEMO- -3 3 Typical ββ 2 ν event observed from 100 Mo Transverse view Transverse Run Number: 2040 Run Number: Longitudinal Longitudi Event Number: 9732 2040 view view nal Date: 2003-03-20 Event Number: view 9732 Date: 2003-03-20 Vertex 100 Mo foil 100 Mo foil emissi Geiger plasma on longitudinal propagation Vertex emissi Drift distance on Deposited energy: E 1 +E 2 = 2088 keV Internal hypothesis: ( ∆ t) mes –( ∆ t) theo = 0.22 ns ( ∆ vertex) // = Scintillator Common vertex: 5.7mm ( ∆ vertex) ⊥ = 2.1 mm + PMT Criteria to select ββ Trigger : 1 PMT > 150 keV events: 3 Geiger hits (2 neighbour layers + 1) • 2 tracks with charge < 0 • Internal hypothesis (external event rejection) • 2 PMT, each > 200 keV Trigger rate = 7 Hz • No other isolated PMT ( γ rejection) ββ events: 1 event every 1.5 minutes • PMT-Track association • No delayed track ( 214 Bi rejection) • Common vertex

  15. Background events observed by NEMO- -3 3… … Background events observed by NEMO Electron + α delay track (164 µ s) 214 Bi → 214 Po → 210 Pb Electron crossing > 4 MeV Neutron capture → Electron + N γ ’s 208 Tl (E γ = 2.6 MeV) Electron – positron pair B rejection

  16. Performance of the detector Performance of the detector ββ events from the foil Tracking Detector: Calorimeter: � 99.5 % Geiger cells ON β � 97% of the PMTs+scintillators are ON - � Vertex resolution : � Energy Resolution : ∆ Verte 2 e − channels (482 and 976 keV) using 207 Bi sources calibration runs (every ~ 40 days) with 207 Bi x at 3 well known positions in each sector sources β σ ⊥ ( ∆ Vertex) = 0.6 cm Ext. Wall Int.Wall External Background - 5" PMTs 3" PMTs σ // ( ∆ Vertex) = 1.3 cm (Z=0) � e + /e − separation with a magnetic field of 25 G FWHM (1 MeV) 14% 17% ∆ Vertex = distance between the two ~ 3% confusion at 1 MeV � Daily Laser Survey to control gain stability of each PM vertex ( ∆ t mes – ∆ t calc ) internal hypo. (ns) Time Of Flight: 976 keV � Time Resolution ( ββ channel) ≈ 250 ps at 1 MeV 207 Bi ToF (external crossing e − ) > 3 ns ) Expected Performance of the detector s n ( 2 conversion e − . o p y h l a n has been reached external crossing e − totaly rejected r e 482 keV and 976 t x e ) ∆ t calc keV – ∆ t mes ( FWHM = 135 keV 482 (13.8%) keV

  17. 2 β β 2 2 ν ν decay results in NEMO decay results in NEMO- -3 3 2

  18. 100 Mo 2 β 2 ν preliminary results (Data Feb. 2003 – Dec. 2004) Angular Distribution Sum Energy Spectrum 219 000 events 219 000 events NEMO-3 NEMO-3 6914 g 6914 g 100 Mo 100 Mo 389 days 389 days S/B = 40 S/B = 40 • Data 2 β 2 ν • Data Monte Carlo 2 β 2 ν Background subtracted Monte Carlo Background subtracted Cos( θ ) E 1 + E 2 (keV) T 1/2 = 7.11 ± 0.02 (stat) ± 0.54 (syst) × 10 18 y 7.37 kg.y

  19. 2 β 2 ν preliminary results for other nuclei NEMO-3 932 g T 1/2 = 9.6 ± 0.3 (stat) ± 1.0 (syst) × 10 19 y 82 Se 389 days 2750 events T 1/2 = 2.8 ± 0.1 (stat) ± 0.3 (syst) × 10 19 y 116 Cd 82 Se S/B = 4 150 Nd T 1/2 = 9.7 ± 0.7 (stat) ± 1.0 (syst) × 10 18 y • Data T 1/2 = 2.0 ± 0.3 (stat) ± 0.2 (syst) × 10 19 y 96 Zr 2 β 2 ν Monte Carlo Background subtracted Background subtracted E 1 +E 2 (keV) NEMO-3 NEMO-3 37 g 405 g NEMO-3 5.3 g 168.4 days 168.4 days 168.4 days 116 Cd 96 Zr 150 Nd 1371 events 449 events 72 events S/B = 7.5 S/B = 2.8 S/B = 0.9 Data Data Data ββ2ν ββ2ν ββ2ν simulation simulation simulation E 1 +E 2 (MeV) E 1 +E 2 (MeV) E 1 +E 2 (MeV)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend