double beta decays study with nemo 3 and supernemo
play

Double beta decays study with NEMO 3 and SuperNEMO CHAUVEAU - PowerPoint PPT Presentation

s u p e r n e m o c o l l a b o r a t i o n Double beta decays study with NEMO 3 and SuperNEMO CHAUVEAU Emmanuel on behalf of the NEMO collaboration University of Manchester Rencontres de Moriond, Electroweak session CHAUVEAU


  1. s u p e r n e m o c o l l a b o r a t i o n Double beta decays study with NEMO 3 and SuperNEMO CHAUVEAU Emmanuel on behalf of the NEMO collaboration University of Manchester Rencontres de Moriond, Electroweak session CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 1 / 20

  2. Two-neutrinos and neutrinoless double beta decays -60 Mass exces (MeV) Arbitrary unit -65 82 Zr 82 82 ββ2ν Ge Y 82 As -70 -75 82 Rb 82 Br ββ0ν 82 Sr 82 Se -80 β β 82 Kr -85 0.0 0.2 0.4 0.6 0.8 1.0 32 34 36 38 40 Atomic Number Z (E1 + E2) / Q ββ Two-neutrino double beta decay ( ββ 2 ν ) Neutrinoless double beta decay ( ββ 0 ν ) → ( A , Z + 2 ) + 2 e − + 2 ¯ → ( A , Z + 2 ) + 2 e − ( A , Z ) − ν e ( A , Z ) − � second-order weak process � violates lepton number conservation ∼ 10 20 years T ββ 2 ν � requires a Majorana neutrino ( ν = ¯ ν ) 1 / 2 � allowed by Standard Model and observed � new physics : m ββ , V+A, Majoron, SUSY... � input to nuclear physics model CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 2 / 20

  3. Detection of neutrinoless double beta decay Available observables � Electron energy sum E 1 + E 2 Discrimination ββ 2 ν vs. ββ 0 ν � � Individual energy E 1 , E 2 Study on possible ββ 0 ν mechanisms � Angular distribution cos θ Mass Mechanism (MM) Electron energy difference Angular distribution u u d d Γ⁻ ¹ d � / d( Δ E) Γ⁻ ¹ d � / d(cos Θ ) d u ⁸ ²Se ⁸ ²Se ( V - A ) W⁻ e⁻ L ⁻ 1,5 V+A 1,5 � e R � e L ( V - A ) MM e⁻ W⁻ L d u d d u u 1,0 1,0 MM Right Handed V+A Current (V+A) 0,5 0,5 u u d d u d ( V - A ) W⁻ e⁻ L Eur. Phys. J. C. 70 p. 927(2010) � e R ⁻ 0 0 � e R 0 0,2 0,4 0,6 0,8 1,0 -1 -0,6 -0,2 0,2 0,6 1 ( V + A ) e⁻ W⁻ R | Δ E| / Q ββ cos Θ d u d d u u CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 3 / 20

  4. Double beta decay experiments categories pure calorimeter approach V excellent detection efficiency e ⁻ 1 e ⁻ V good energy resolution 2 X no identification of electrons X high background source = calorimeter tracker + calorimeter approach X low detection efficiency e ⁻ 1 X poor energy resolution V electron recognition, ββ kinematic calorimeter e ⁻ V background measurement + rejection tracker or TPC 2 source CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 4 / 20

  5. The NEMO 3 detector (1) Ultra low background detector � γ shielding : pure Iron (18 cm) � n shielding : borated water (30 cm) + wood (40 cm) � radon trapping facility from october 2004 → radon-free air buffer around detector � location in Modane underground laboratory (LSM) in Frejus tunnel : 4800 m.w.e. zoom in a NEMO 3 sector A(NEMO 3) ∼ 1000 Bq / 200 tons CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 5 / 20

  6. The NEMO 3 detector (2) NEMO-3 "camembert" (source top view) Double beta decay 48 Ca 5 4 150 Nd 6 3 ¹ ⁰⁰ Mo 6,9 kg 96 Zr 100 Mo 82 S e 100 Mo 2 7 E1 E2 ⁸ ²Se 0,93 kg 82 S e 100 Mo β ⁻ t1 t2 1 8 β ⁻ θ nat Te 100 Mo ¹³ ⁰ Te 0,45 kg 0 9 130 Te Cu ¹¹ ⁶ Cd 0,40 kg 100 Mo nat Te Measured + rejected background 10 19 ¹ ⁵⁰ Nd 36,5 g 116 Cd 100 Mo 11 18 130 Te 100 Mo ⁹⁶ Zr 9,43 g � 100 Mo � 12 100 Mo 17 100 Mo 100 Mo ⁴⁸ Ca 6,99 g 13 16 14 15 � � "crossing" e ⁻ Unique features � Multi-source detector : 7 ββ isotopes e ⁻ � Particles identification : α , β − , β + , γ e ⁺ or e ⁻ � Kinematics of ββ decay : E 1 , E 2 , cos θ , ∆ t ⇒ Topological signature of events ⇒ Background rejection + measurement internal Δt ~ 0 ns external Δt > 3 ns ⇒ Study of ββ 0 ν , ββ 2 ν , ββ *, ... CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 6 / 20

  7. Selection of candidate ββ events Event candidate for ββ2ν decay from ¹⁰⁰Mo foil E1 + E2 = 1.097 MeV Run : 3478 internal hyp. : |Δt meas - Δt calc | = 0.33 ns calorimeter hit Event : 6930 external hyp. : |Δt meas - Δt calc | = 5.21 ns Date : 09/11/2004 (Δvertex) t = 4.4 mm (Δvertex) z = 3 cm track vertex Top view Side view � Two tracks Q < 0 � Internal hypothesis (external event rejection) � Two calorimeter E > 200 keV � No other calorimeter hit ( γ rejection) � Association track – calorimeter hit � No delayed track ( 214 Bi rejection) � Common vertex CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 7 / 20

  8. Origin and mechanisms of NEMO 3 background � External γ from detector radioactivity, neutrons and cosmics � Internal contamination in β emitter with Q β ≥ Q ββ ( ≈ 3 MeV) 214 Bi in 238 U chain ( Q β = 3.3 MeV) 208 Tl in 232 Th chain ( Q β = 4.9 MeV) � Radon inside tracking detector decay then deposit of daughter on wire and foil surfaces → feed contamination in 214 Bi � ββ 2 ν background for ββ 0 ν signal Foil Foil Foil e ⁻ e ⁻ e ⁻ � � � e ⁻ e ⁻ e ⁺ Pair Compton Double creation + Møller Compton CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 8 / 20

  9. Origin and mechanisms of NEMO 3 background � External γ from detector radioactivity, neutrons and cosmics � Internal contamination in β emitter with Q β ≥ Q ββ ( ≈ 3 MeV) 214 Bi in 238 U chain ( Q β = 3.3 MeV) 208 Tl in 232 Th chain ( Q β = 4.9 MeV) � Radon inside tracking detector decay then deposit of daughter on wire and foil surfaces → feed contamination in 214 Bi � ββ 2 ν background for ββ 0 ν signal Foil Foil Foil β β β � � e ⁻ e ⁻ e ⁻ Beta Beta + Beta + + IC Møller Compton CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 8 / 20

  10. Origin and mechanisms of NEMO 3 background � External γ from detector radioactivity, neutrons and cosmics � Internal contamination in β emitter with Q β ≥ Q ββ ( ≈ 3 MeV) 214 Bi in 238 U chain ( Q β = 3.3 MeV) 208 Tl in 232 Th chain ( Q β = 4.9 MeV) � Radon inside tracking detector decay then deposit of daughter on wire and foil surfaces → feed contamination in 214 Bi � ββ 2 ν background for ββ 0 ν signal Foil ²²²Rn 3.8 days β ²¹⁴Bi Q = 3.27 MeV β e ⁻ Beta + Möller CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 8 / 20

  11. Origin and mechanisms of NEMO 3 background � External γ from detector radioactivity, neutrons and cosmics � Internal contamination in β emitter with Q β ≥ Q ββ ( ≈ 3 MeV) 214 Bi in 238 U chain ( Q β = 3.3 MeV) 208 Tl in 232 Th chain ( Q β = 4.9 MeV) � Radon inside tracking detector decay then deposit of daughter on wire and foil surfaces → feed contamination in 214 Bi � ββ 2 ν background for ββ 0 ν signal Arbitrary unit ββ2ν ββ0ν 0.0 0.2 0.4 0.6 0.8 1.0 (E1 + E2) / Q ββ CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 8 / 20

  12. Measurement of NEMO 3 background CHANNEL BACKGROUND MEASUREMENT e γ external external background : 40 K, 60 Co, 226 Ra, ... e crossing pure β emitters in foil : 234 m Pa, 40 K, 90 Y, ... e 0 e γ e crossing event β + γ emitters in foil : 207 Bi, 208 Tl, 214 Bi, ... e γγ e γγγ 222 Rn in gas, 214 Bi on foil and wires e α � Internal, external and radon background measurement X + � Analysis through independent channels � Model validation with a dedicated control foil (pure Cu) 8 e γ external event [ NIM A606 (2009) 449-465 ] CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 9 / 20

  13. Measurement of NEMO 3 background : example with radon 222 Rn activity in NEMO 3 (mBq/m 3 ) channel e α : pure sample of "BiPo" events ²³⁸U ²²²Rn ²¹⁴Po β 164 µs 8 ²¹⁴Bi α 19,7 m α X + ²¹⁰Pb O 0,02% β 21,4 a e α event ²¹⁰Tl 1,3 m 10 5 NIM A 606 (2009) 449-465 54.70 / 51 P1 0.1917E+05 16.05 P2 0.6688 0.1878E-01 P3 162.9 0.1633 P4 0.3174E+05 0.2284E+05 P5 16.31 2.481 10 4 Fraction of non α events: 0.59 ± 1.33 % T 1/2 = 162.9 μs 10 3 0 200 400 600 800 1000 α track delay (µs) CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 10 / 20

  14. NEMO 3 results : ββ 2 ν with 100 Mo (phase 2 : 7 kg x 4 years) Energy sum of 2 electrons Single electron energy Angular distribution � > 700000 events from 100 Mo � signal / background ratio = 76 � T ββ 2 ν x 10 18 years = 7.16 ± 0.01 (stat) ± 0.54 (sys) [preliminary] 1 / 2 x 10 18 years phase 1 : 7.11 ± 0.02 (stat) ± 0.54 (sys) [Phys. Rev. Lett. 95 182302 (2005)] � ultimate background component for ββ 0 ν signal CHAUVEAU Emmanuel Double beta decays study with NEMO 3 and SuperNEMO 11 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend