rearrangements of numerical series
play

Rearrangements of numerical series Marion Scheepers October 13, - PowerPoint PPT Presentation

Rearrangements of numerical series Marion Scheepers October 13, 2011 Marion Scheepers Rearrangements of numerical series Notation, conventions f : N R Signwise monotonic a 1 , a 2 , , a n , : Positive terms of f in


  1. Rearrangements of numerical series Marion Scheepers October 13, 2011 Marion Scheepers Rearrangements of numerical series

  2. Notation, conventions f : N − → R Signwise monotonic a 1 , a 2 , · · · , a n , · · · : Positive terms of f in order. − b 1 , − b 2 , · · · , − b n , · · · : Negative terms of f in order Marion Scheepers Rearrangements of numerical series

  3. Nicolas Oresme’s Theorem (1320 - 1382) Theorem (Oresme) The series ∞ 1 � n n = 1 is divergent. Marion Scheepers Rearrangements of numerical series

  4. The Leibniz Convergence Test (1675) Theorem (Leibniz) If ( a n : n = 1 , 2 , 3 , ... ) is a monotonic sequence of real numbers such that lim n →∞ a n = 0 , then the series ∞ ( − 1 ) n − 1 a n � n = 1 is convergent. Marion Scheepers Rearrangements of numerical series

  5. Thus, each of the series ( − 1 ) n − 1 ∞ � , n n = 1 ∞ ( − 1 ) n − 1 � √ n n = 1 and ( − 1 ) n ∞ � n ln ( n ) n = 2 is conditionally convergent. Marion Scheepers Rearrangements of numerical series

  6. Dirichlet’s Observations (1837) The rearrangement 1 1 + 1 3 − 1 2 + 1 5 + 1 7 − 1 4 + · · · converges, while the rearrangement 1 + 1 − 1 + 1 5 + 1 7 − 1 √ √ √ √ √ √ 4 + · · · 1 3 2 diverges. Marion Scheepers Rearrangements of numerical series

  7. Martin Ohm’s Theorem (1839) Theorem (M. Ohm) For p and q positive integers rearrange ( ( − 1 ) n − 1 : n = 1 , 2 , · · · ) by n taking the first p positive terms, then the first q negative terms, then the next p positive terms, then the next q negative terms, and so on. The rearranged series converges to ln ( 2 ) + 1 2 ln ( p q ) . Marion Scheepers Rearrangements of numerical series

  8. Riemann’s Theorem (1854) Theorem (Riemann) A numerical series � f is conditionally convergent if, and only if, there is for each real number α a rearrangement of this series which converges to α . Marion Scheepers Rearrangements of numerical series

  9. Observations The rearrangement 1 1 + 1 3 − 1 2 + 1 5 + 1 7 − 1 4 + · · · ( − 1 ) n − 1 converges to a different sum than � ∞ , while the n = 1 n rearrangement 1 1 1 1 1 1 2 ln ( 2 ) + 4 ln ( 4 ) − 3 ln ( 3 ) + 6 ln ( 6 ) + 8 ln ( 8 ) − 5 ln ( 5 ) + · · · ( − 1 ) n converges to the same sum as � ∞ n ln ( n ) . 2 Marion Scheepers Rearrangements of numerical series

  10. Schlömilch’s Theorem (1873) Theorem (Schlömilch) Let f be signwise monotonic and � f conditionally convergent. For p and q positive integers rearrange f by taking the first p positive terms, then the first q negative terms, and so on. The rearranged series converges to ∞ f ( n ) + g ln ( p � q ) n = 1 where g is the limit lim n →∞ n · a n . Marion Scheepers Rearrangements of numerical series

  11. Asymptotic density A ⊆ N , n ∈ N π A ( n ) = |{ x ∈ A : x ≤ n }| π A ( n ) d ( A ) = lim n →∞ n d ( A ) is the asymptotic density of A when this limit exists. � a j if n is the j-th element of A . f A ( n ) = − b j if n is the j-th element of N \ A . � ω f = { x ∈ ( 0 , 1 ) : ( ∃ A ⊆ N )( d ( A ) = x and f A converges ) } � σ f = { x ∈ ( 0 , 1 ) : ( ∀ A ⊆ N )( d ( A ) = x and f A converges ) } Marion Scheepers Rearrangements of numerical series

  12. Pringsheim’s Theorems (1883) Pringsheim found: A) Convergence criteria of � f B when lim n · a n = ∞ . B) Convergence criteria of � f B when lim n · a n = 0. C) The change in value of � f B for all B with 0 < d ( B ) < 1 when lim n · a n = g � = 0. Marion Scheepers Rearrangements of numerical series

  13. Regarding Pringsheim’s Theorem A) Theorem Let f be signwise monotonic, converging to 0 . Let 0 < x < 1 be given. The following are equivalent: 1 x ∈ ω f , and lim n · a n = ∞ . 2 For each set B such that � f B converges, d ( B ) = x (i.e., ω f = { x } . Note: In this case σ f = ∅ . Marion Scheepers Rearrangements of numerical series

  14. A Lemma Lemma Let f be signwise monotonic. If | ω f | > 1 , then for all A , B ⊆ N such that d ( A ) = d ( B ) and � f A converges, also � f B converges, and � f A = � f B . In this case � Φ f ( x ) = f A , A some subset of N with d ( A ) = x is independent of the choice of A . Marion Scheepers Rearrangements of numerical series

  15. Regarding Pringsheim’s Theorem B) Theorem Let f be signwise monotonic, converging to 0 . Let x ∈ R be given. The following are equivalent: 1 ω ( f ) ∩ ( 0 , 1 ) � = ∅ , and lim n · a n = 0 . 2 For each set B such that 0 < d ( B ) < 1 , � f B converges to x. 3 ω f ⊇ ( 0 , 1 ) and Φ f is constant of value x on ( 0 , 1 ) . 4 ω f = [ 0 , 1 ] . In this case, σ f = ( 0 , 1 ) . Marion Scheepers Rearrangements of numerical series

  16. Regarding Pringsheim’s Theorem C) Theorem Let f be signwise monotonic. Let x ∈ R be given. The following are equivalent: 1 ω f is dense in some interval. 2 σ f = ( 0 , 1 ) . 3 lim n · a n exists and for all x, y in ( 0 , 1 ) , Φ f ( x ) = Φ f ( y ) + lim n · a n ln ( x ( 1 − y ) y ( 1 − x )) . In this case, ω f = ( 0 , 1 ) . Marion Scheepers Rearrangements of numerical series

  17. A detour to groups For x, y in (0,1), define xy x ⊙ y = 1 − x − y + 2 xy . (( 0 , 1 ) , ⊙ ) is an Abelian group with identity element 1 2 . Fact 1: For g a positive real define x Ψ g : ( 0 , 1 ) − → R : x �→ g ln ( 1 − x ) . Ψ g is a group isomorphism from (( 0 , 1 ) , ⊙ ) to ( R , +) . Fact 2: Marion Scheepers Rearrangements of numerical series

  18. Return to Pringsheim’s Theorem C) Let f be signwise monotonic with σ f = ( 0 , 1 ) and Φ f non-constant. Put g = lim n · a n . Then g > 0. Φ f ( · ) − Φ f ( 1 2 ) : ( σ f , ⊙ ) − → ( R , +) is a group isomorphism. The function d ( x , y ) = g | ln ( x ( 1 − y ) y ( 1 − x )) | is a metric on σ f , and measures | � f A − � f B | in terms of d ( A ) and d ( B ) . Marion Scheepers Rearrangements of numerical series

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend