reactive barriers for the passive remediation of
play

Reactive Barriers for the Passive Remediation of Chlorinated - PowerPoint PPT Presentation

Reactive Barriers for the Passive Remediation of Chlorinated Solvents in Sediments and Groundwater Discharge Michelle M. Lorah USGS, Baltimore, Maryland in cooperation with DoD, Aberdeen Proving Ground USEPA, Region III NIEHS, Superfund


  1. Reactive Barriers for the Passive Remediation of Chlorinated Solvents in Sediments and Groundwater Discharge Michelle M. Lorah USGS, Baltimore, Maryland in cooperation with DoD, Aberdeen Proving Ground USEPA, Region III NIEHS, Superfund Research Program

  2. Aerobic CH 4 Fe 2+ S 2- micro-zones dissolved NH 3 around roots plumes DNAPL O2 Conceptual model for chlorinated solvent contamination in wetland (modified from Lorah et al., 2005) Stottmeister et al.(2003) Biotech.Advances

  3. HCA HCA Chlorinated VOCs at West PtCA Branch Canal Creek and PCE PCE their anaerobic 1122- 1122- degradation pathways TeCA TeCA TCE TCE CT CT Parent VOCs in orange 112TCA 112TCA Chlorinated ethanes: HCA= hexachloroethane 12DCE 12DCE CF CF PtCA= pentachloroethane 1122TeCA= 1,1,2,2-tetrachloroethane 12DCA 12DCA Chlorinated ethenes: CO 2 CO 2 PCE= tetrachloroethene MeCl MeCl TCE= trichloroethene VC VC CA CA Chlorinated methanes: CT= carbon tetrachloride CF= chloroform Ethene Ethene Methane Methane Ethane Ethane

  4. Site Characterization Chloroform TIR Image Tetrachloroethene PDB West Branch Canal Creek, APG

  5. WBC-2 Dechlorinating Culture 100 liter Relative Abundances above 1%

  6. Reactive Barrier Design and Monitoring Re-amendment System Single-hole multilevel diffusion Passive samplers and multilevel wells Below surface diffusion microwells bags Pea Gravel Sand, Peat, Compost, Chitin, WBC2 Sand, Peat, Compost, ZVI (option for CT) Geotextile Hydraulic Gradient Wetland Sediment (10-15 ft thick) (Artesian) e a Se e p Ar Aquifer (~40 ft thick) NOT T O SCAL E

  7. Microcosms: Bioaugmented microcosms, TeCA Wetland Sediment- Compost Mixtures • Different composts tested for support of WBC-2 activity and VOC degradation • Variable results with different composts for degradation of both parent and daughter compounds

  8. APG Reactive Barrier: Upward Flow Columns VC TeCA TCE k t 1/2 (day -1 ) Contaminant (hrs) ethene 1122TeCA 3.4 4.8 ethane Chloroform 2.3 7.2 Carbon tetrachloride 2.8 5.9 Tetrachloro- ethene 1.4 12 Trichloroethene 3.0 5.5

  9. 3,500 Sulfate, milligrams per literr Sulfate Salinity microcosms 3,000 2,500 2,000 1,500 1,000 500 0 0 10 20 30 Days 120 50,000 TeCA Removal Percent TeCA remaining 100 Methane 40,000 Methane (ug/L) 80 30,000 60 40 20,000 20 10,000 0 0 0 10 20 30 Days 0 10 20 30 Days

  10. Reactive Barrier- West Branch Canal Creek, APG 5 ft bls 1 ft bls

  11.  Chemical plant 1966- Standard Chlorine of 2002; EPA Superfund Delaware,DNAPL Extent 2002 o 1981- 5,000 gal CB CB, DCBs, TCBs DCBs, TCBs o 1986 storage tanks- Not DNAPL 579,000 gal 14DCB and TCBs Wetland porewater  Abuts Red Lion Creek, part of Delaware River Aquifer watershed  Treatment in uplands, Containment wall but not in wetlands  Half of water flow to Red Lion Creek is from Columbia Aquifer

  12. Biodegradation Trichlorobenzenes* 135TCB,124TCB, 123TCB Pathways PCE 70 (124TCB) 1122- Anaerobic (reductive TeCA dechlorination) Dichlorobenzenes* TCE CT • CB serves as terminal 14DCB, 13DCB, 12DCB Aerobic electron acceptor CO2, 75 (14DCB) • Separate e- donor 112TCA HCl required • rate decreases with M Chlorobenzene* 12DCE CF decreasing number Cl Aerobic (oxidation) ?? 100 • O 2 required as electron 12DCA CO 2 acceptor Benzene * • CBs utilized as C and e - MeCl VC donor • rate increases with 5 CA decreasing number Cl CO 2, CH 4 Drinking Water • Short-lived MCL µg/L intermediates * Parent contaminant Ethene Methane Ethane

  13. Wetland Study Area, SCD • Upward  Red Lion Creek flow at all  24-hr Seepage = sites • Seepage measured on wetland surface and creek bottom

  14. sorbent and Sand+Inoculated GAC+Chitin biofilm attach GAC O2 Mixed anaerobic CH 4 DNAPL Fe 2+ S 2- and aerobic dissolved conditions NH 3 plumes DNAPL Conceptual model for contamination and dual-biofilm reactive barrier in wetland

  15. Approach to evaluate natural and enhanced biodegradation • In situ microcosms with Bio- Traps (Microbial Insights) – Stable isotope probing ( 13 C- labeled 14DCB, CB, B) – Microbial species and functional genes for biodegradation • Evaluate biodegradation processes in flow-through bioreactors – Upflow fixed film bioreactors – Mimic growth in subsurface Bioreactor polypropylene – Allows changing conditions support matrix for biofilms

  16. 25.0 Concentration, in milligrams per Northwest PDBs, October 2011 Methane 20.0 Sulfide 15.0 Ferrous iron liter Ammonia 10.0 5.0 0.0 8 102 131 132 133 134 135 11 138 139 140 141 142 143 144 Site Number 40.0 Concentration, in milligrams per Northeast PDBs, October 2011 Methane 35.0 Sulfide 30.0 Ferrous iron 25.0 liter 20.0 Ammonia 15.0 10.0 5.0 0.0 106 107 108 109 110 6 112 113 114 14 116 117 118 119 120 122 123 15 125 126 127 Site Number

  17. 13 C Utilized for CO2, 13 C Chlorobenzene 3,000 PDB-01 8 (NW) 2,500 Bio-Traps: PDB-04 104 (NW) 13 C-labeled 2,000 DIC Del (‰) 107 (NE) PDB-07 6 (NE) 1,500 Chloro- PDB-10 (2009) 1,000 benzene 500 0 -500 Background MNA Lactate/Chitin WBC-2 13 C Utilized for Biomass, 13 C Chlorobenzene 80 PDB-01 8 (NW) 60 PDB-04 104 (NW) PLFA Del (‰) 107 (NE) PDB-07 40 6 (NE) PDB-10 (2009) 20 0 -20 -40 Background MNA Lactate/Chitin WBC-2

  18. QuantArray Microbial Analysis- Anaerobic 1.0E+08 -------Reductive dechlorination------- 1.0E+07 1.0E+06 Cells/mL 1.0E+05 1.0E+04 1.0E+03 < < 1.0E+02 J 1.0E+01 DHC tceA vcr BVC DHBt DHG BCR bssA assA MNA LAC WBC-2 Reductive dechlorination: DHC , Dehalococcoides spp. BTEX, PAHs and alkanes: TCE, tceA reductase BCR, Benzoyl coenzyme A reductase VCR, vinyl chloride reductase bssA, benzylsuccinate synthase BV1 , vinyl chloride reductase assA, alkylsuccinate synthase DHBt, Dehalobacter spp. DHG, Dehalogenimonas spp.

  19. QuantArray Microbial Analysis- Aerobic 1.0E+08 1.0E+07 1.0E+06 Cells/mL 1.0E+05 1.0E+04 1.0E+03 < < NA < NA 1.0E+02 pMMO sMMO TCBO RDEG RMO PHE EDO PM1 ALKB MNA LAC WBC-2 pMMO, particulate methane monooxygenase PHE, phenol hydroxylase sMMO, soluble methane EDO, ethylbenzene/isopropyl- monooxygenase benzene dioxygenase TCBO, trichlorobenzene PM1, Methylibium petroliphilum dioxygenase PM1 RDEG, toluene monooxygenase 2 ALKB, alkane monooxygenase RMO, toluene monooxygenase

  20. Total CBs +Benzene , in µg/L SCD Bioreactors Total CBs +Benzene , in µg/L 1,000 1,500 2,000 2,500 3,000 1,000 2,000 2,500 3,000 1,500 500 500 0 0 3/12 3/12 Bioreactor Native (C ) 3/22 3/22 Inflow Tank 4/1 WBC-2 (D) Bioreactor 4/1 Waste 4/11 4/11 Inflow Tank 4/21 4/21 5/1 5/1 Waste 5/11 5/11 5/21 5/21 5/31 5/31 6/10 6/10 6/20 6/20 6/30 6/30 aerobic 6/20-8/25 7/10 7/10 2012 7/27/12 + nutrients added buffer 7/20 7/20 7/30 7/30 8/9 8/9 8/19 8/19 8/29 8/29 9/8 9/8 9/18 9/18 9/28 9/28 10/8 10/8 10/20 10/10- aerobic 10/20 10/10- aerobic 10/18 10/18 10/28 10/28 11/7 11/7

  21. Aerobic Native Culture (15B) 8,000 15BN-B 124TCB 6,000 Concnetration (ug/L) 12DCB Chlorobenzene 4,000 2,000 124TCB 12DCB CB k (per hr) 0.051 0.071 0.15 0 half life (hrs) 13.6 9.8 4.6 0 20 40 60 Time (hrs) r 2 .972 .999 .968

  22. Reactive Barrier Concept Aerobic Zone HCl O 2 diffusion from H 2 O Aerobic surface and CO 2 degradation dispersed throughout from plant roots Sand Grains GAC – sorbent and biofilm support Anaerobic Biofilm Reductive Predominant dechlorination Aerobic Biofilm Predominant Chitin – Slowly dissolving C source Anaerobic zone GW flow

  23. GAC with WBC-2: Classes >1% Abundance Bacilli 100 Actinobacteria Mollicutes 80 Relative Abundance (%) Bacteroidia 60 Thermotogae Gammaproteobacteria 40 Betaproteobacteria 20 2 Deltaproteobacteria 0 Synergistia Clostridia Chloroflexi Dehalococcoidetes 1 Anaerolineae

  24. GAC with 15B: Proteobacteria, Order 60 Order Burkholderiales 2 Relative Abundance (% ) 50 Rhizobiales 1 Caulobacterales 40 30 20 10 0 15B.1 15B.2 +GAC.1 +GAC.2 • Significant increase in the Betaproteobacteria group Burkholderiales on GAC.

  25. 120 Microcosm Anaerobic WBC-2: 14DCB Percent Remaining 100 Results: 80 Anaerobic W-DCB WBC-2 60 DIW Control GAC-DCB Bacteria Biofilm on 40 W-GAC-DCB GAC GAC 20 Biofilm-GAC DIW-DCB-TECA 0  Slight decrease 0 5 10 15 in CBs with Days 120 culture in mineral Anaerobic WBC-2: 12DCB media compared Percent Remaining 100 to DIW  Rapid sorption 80 DIW Control W-DCB to GAC with and 60 without Bacteria GAC-DCB anaerobic biofilm 40 W-GAC-DCB  Distinctly faster DIW-DCB-TECA overall CB 20 GAC Biofilm-GAC removal in 0 biofilm-GAC 0 5 10 15 Days

  26. 120 Aerobic: 14DCB Percent Remaining Microcosm 100 DIW Control Results: 80 AB-DCB Aerobic 15B 60 Bacteria A-GAC-DCB Seeded on 40 AB-GAC-DCB GAC GAC 20 Biofilm-GAC A-DIW-DCB 0  Delay in 0 5 10 15 Days sorption to GAC with 120 Aerobic: 12DCB aerobic biofilm Percent Remaining 100  Slightly faster DIW Control 80 overall CB AB-DCB removal in 60 Bacteria A-GAC-DCB biofilm-GAC 40 AB-GAC-DCB GAC Biofilm-GAC 20 A-DIW-DCB 0 0 5 10 15 Days

  27. Column Testing Sand Columns: Sediment Columns: Medium Sand+ in progress- no data yet 5 % GAC + 5 % GAC + 3 % Chitin 3 % Chitin

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend