random quantum magnets in d 2 dimensions critical
play

Random quantum magnets in d 2 dimensions: Critical behavior and - PowerPoint PPT Presentation

Random quantum magnets in d 2 dimensions: Critical behavior and entanglement entropy Ferenc Igl oi (Budapest) in collaboration with Istv an Kov acs Phys. Rev. B 83 , 174207 (2011) J. Phys.: Condens. Matter 23 , 404204 (2011) EPL 97


  1. Random quantum magnets in d ≥ 2 dimensions: Critical behavior and entanglement entropy Ferenc Igl´ oi (Budapest) in collaboration with Istv´ an Kov´ acs Phys. Rev. B 83 , 174207 (2011) J. Phys.: Condens. Matter 23 , 404204 (2011) EPL 97 , 67009 (2012) Phys. Rev. B 87 , 024204 (2013) Statistical Physics of Quantum Matter: Taipei, July 28-31, 2013 1

  2. Introduction • Quantum phase transitions – quantum spin glasses: LiHo x Y 1 − x F 4 – takes place at T = 0 • Paradigmatic model: random transverse – due to quantum flactuation Ising model (RTIM) – by varying a quantum control pa- – in 1d exact results, also through rameter strong disorder RG method • Examples ∗ infinite disorder scaling at the critical point – rare-earth magnetic insulators ∗ dynamical (Griffiths-McCoy) sin- – heavy-fermion compounds gularities outside the critical – high-temperature superconductors point – two-dimensional electron gases – in 2d numerical implementation of the SDRG method – quantum magnets: LiHoF 4 ∗ infinite disorder scaling • Disorder often play an important rˇ ole ∗ but contradictionary results – Anderson localization through the quantum cavity ap- proach – many-body localization 2

  3. Aim of the present talk • Improve the numerical algorithm of the • Study the boundary critical behavior at SDRG method surfaces, corners, edges • Study the critical behavior of the RTIM for d > 2 • Study the entanglement entropy and its • Study Erd˝ os-R´ enyi random graphs ( d → ∞ ) singularity at the critical point 3

  4. Random transverse Ising model H = − ∑ � i , j � J ij σ z i σ z j − ∑ i h i σ x i . • box-h disorder – p ( J ) = Θ ( J ) Θ ( 1 − J ) ( Θ ( x ) : Heaviside • J i j couplings step-function) • independent random numbers from the – q ( h ) = 1 Θ ( h ) Θ ( h b − h ) distribution p ( J ) h b • h i transverse fields • independent random numbers from the • fix-h disorder distribution q ( h ) – p ( J ) = Θ ( J ) Θ ( 1 − J ) – q ( h ) = δ ( h − h f ) . Quantum control parameter: θ = log ( h b ) or θ = log ( h f ) . 4

  5. Strong disorder RG approach (Ma, Dasgupta, Hu 1979, D.S. Fisher 1992, F.I. & Monthus 2005) • sort the couplings and transverse fields, Ω = max ( J i , h i ) • eliminate the largest parameter - reduce the number of spins by one • generate new effective parameters between the remaining spins – i and j form a ferromagnetic cluster - aggregation Ω = J i j in an effective field: � h i j = h i h j J ij having a moment: � µ i j = µ i + µ j – site i is decimated out - annihilation Ω = h i J jk = J ij J ik new effective couplings between sites j and k : � h i • repeate the transformation • at the fixed point Ω is reduced to Ω ∗ = 0 . • final result: set of connected clusters with different masses, µ , decimated at different energies, Ω . 5

  6. Exact results in 1D Infinite disorder fixed point (IDFP) moment: µ ∼ [ ln ( Ω 0 / Ω )] φ ∼ L d f • Critical point: log ( J ) = log ( h ) √ √ 5 + 1 x = 3 − 5 – distribution of the effective parame- d f = φψ = d − x , φ = , 2 4 ters is logarithmically broad – asymptotically exact decimation steps • In the Griffiths phase: θ − θ c > 0 – strongly anisotropic scaling – non-singular static behaviour: ξ < ∞ ln Ω L ∼ L ψ , ψ = 1 / 2 – singular dynamical behaviour: Ω ∼ L − z dynamical exponent: z = z ( θ ) – large effective spin clusters χ ( T ) ∼ T − 1 + d / z , C v ( T ) ∼ T d / z size: ξ ∼ | θ − θ c | − ν ν = 2 6

  7. Numerical implementation of the RG procedure for D > 1 • differences with the 1D procedure • problems with the na ¨ ıve implementation – change in the topology – h -decimations induce several new bonds – application of the maximum rule (valid at IDFP) – the lattice transforms to a fully con- nected cluster – slow algorithm: for N sites works in Ω = J ij Ω = h i a O ( N 3 ) time J ad a d j i i • improved algorithm J ij h i – concept of local maxima - which can b c be decimated independently a ˜ a J d – concept of optimal RG trajectory - J ′ along which the time is minimal i J ′ h ′ – filtering out irrelevant bonds - get- ting rid of latent couplings c b J ′ = J ai J bi /h i J ′ = max( J ai , J aj ) – improved algorithm works in h ′ = h i h j /J ij ˜ J = max( J ad , J ai J di /h i ) O ( N log N ) time 7

  8. Bulk critical behavior 10 0 4D 10 -1 • Finite-size critical points - θ c ( S , L ) 10 -1 10 -2 ~ p 10 -3 – two-copies of the same sample ( S 10 -2 10 -4 and S ′ ) are coupled together p -0.2 0 0.2 10 -3 y L=8 12 16 10 -4 24 32 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 S S’ θ c • Finite-size scaling – shift of the mean: � � – continuously increase θ and monitor � θ c − θ c ( L ) � ∼ L − 1 / ν s the clusters, which are built of iden- tical sites in the copies – width of the distribution: – at θ c ( S , L ) the last correlated cluster ∆ θ c ( L ) ∼ L − 1 / ν w disappears, thus for θ > θ c ( S , L ) we are in the paramagnetic phase – numerical estimates: ν s = ν w • Distribution of pseudocritical points like in a conventional random fixed 10 0 10 -1 point 10 -2 10 -1 ~ p 10 -3 10 -2 10 -4 p 8 10 -3 -0.4 -0.2 0 0.2 0.4 y L=16 24 10 -4 32 48 64 96 -0.1 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 θ c

  9. Scaling at the critical point • Cluster structure – distribution function: L ( µ ) = L d f ˜ P ( µ L − d f ) P – power-law tail for large µ L − d f = u P ( u ) ∼ u − τ , with τ = 1 + d ˜ d f 0.5 10 0 0.4 0.3 d f /d 10 -2 0.2 0.1 10 -4 0 10 2 10 3 10 4 10 5 10 6 P N correlation (left) and energy (right) 10 -6 clusters 2D 3D • Correlation clusters → magnetization 10 -8 4D – mass: µ = N # of connected sites 1 10 100 1000 µ – typical mass: µ ∼ L d f 9

  10. Energy clusters → dynamical scaling • energy scale: ε L smallest gap associ- • We use: γ L = log ε L ated with the energy cluster • Critical point • (disordered) Griffiths phase – typical value: γ L ∼ L ψ – typical value: γ L ∼ z log ( L ) [ ε L ∼ L − z ] – distr.: log p ( γ ) ≈ − ( d / z ) γ , ( γ ≫ 1 ) γ = ( γ L − γ 0 ) L − ψ – scaling combination ˜ – scaling comb.: ˜ γ = ( γ L − z ln ( L ) − γ 0 – Infinite disorder scaling 10 -1 3D 3D 4D 10 -1 10 -1 10 -2 10 -2 p ~ p 10 -3 10 -3 10 -4 10 -2 10 -4 -10 -5 0 5 10 p 0 10 20 30 40 50 60 70 0 10 20 30 40 50 γ -z ln(L) γ γ L=24 L=8 10 -1 32 12 10 -3 48 16 10 -2 64 24 L=24 ~ 96 32 p L=48 128 48 10 -3 L=96 10 -4 10 -4 0 5 10 15 20 25 30 γ 1 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 ~ ~ γ γ 10

  11. Erd˝ os-R´ enyi (ER) random graphs D → ∞ • Construction • log-energy scaling – N sites ER 1.5 – kN / 2 edges in random positions 10 -1 1.2 w 0.9 – k > 1 random graph is percolating 0.6 10 -2 0.3 • Distribution of the pseudocritical points p 0 10 1 10 2 10 3 10 4 10 5 10 6 N N=2 12 10 -3 N=2 14 N=2 16 N=2 18 ER 10 -1 N=2 20 10 -1 N=2 22 10 -4 10 -2 0 5 10 15 20 25 30 35 40 ~ p γ 10 -3 10 -2 inset: fixed- h +, box- h ⊡ 10 -4 p 10 -3 -5 0 5 10 15 • logarithmically infinite disorder scaling y N=2 10 N=2 12 N=2 14 10 -4 N=2 16 • width of the distribution: N=2 18 W ≈ W 0 + W 1 log ε N 1 2 3 4 5 6 θ c ε = 1 . 3 ( 2 ) 11

  12. Bulk critical parameters 1D 2D 3D 4D ER L max 2048 128 48 4 . 2 × 10 6 2 . 1 × 10 6 5 . 3 × 10 6 4 . 2 × 10 6 N max θ ( b ) 1 . 6784 ( 1 ) 2 . 5305 ( 10 ) 3 . 110 ( 5 ) 2 . 775 ( 2 ) 0 c θ ( f ) − 1 . − 0 . 17034 ( 2 ) − 0 . 07627 ( 2 ) − 0 . 04698 ( 10 ) − 0 . 093 ( 1 ) c d ν w 2 . 2 . 48 ( 6 ) 2 . 90 ( 15 ) 3 . 3 ( 1 ) 7 . ( 2 ) d ν s 2 . 50 ( 6 ) 2 . 96 ( 5 ) 2 . 96 ( 10 ) 5 . ( 1 ) √ 3 − 5 x / d 0 . 491 ( 8 ) 0 . 613 ( 3 ) 0 . 68 ( 3 ) 0 . 81 ( 2 ) 4 ψ / d 1 / 2 0 . 24 ( 1 ) 0 . 15 ( 2 ) 0 . 11 ( 2 ) 0 . ( log ) . Conclusions at this point 1 • Infinite disorder fixed point at any di- x/d mensions ψ 0.8 1/(d ν s ) 1/(d ν w ) • Strong disorder RG approach is asymp- 0.6 totically exact 0.4 • Spin glass and random ferromagnet are in the same universality class 0.2 12 0 0 0.2 0.4 0.6 0.8 1 1/d

  13. Boundary critical behavior • Different finite geometries – interpolation formula m l = A . slab wedge pyramid L x [ sin ( πλ )] x [ cos ( πλ / 2 )] x α λ = l / L α • results in 3D N N L N L L 1.2 10 -1 L L L 1.1 r 1 0.9 • Different local exponents m 0.8 10 -3 . surface edge corner 0 0.2 0.4 0.6 0.8 1 λ • magnetization profiles 10 -5 fixed – from the fixed boundary: box (Fisher-de Gennes) 0 0.2 0.4 0.6 0.8 1 m l ∼ l − x b , x = x b , l ≪ L λ – from the free part slab geometry, inset: ratio with the m l ′ ∼ ( l ′ ) x α b , l ′ = L α − l + 1 ≪ L α interpolation formula x α b = x α − x , α : s , c , e 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend