random matrix theory and applications in cosmology
play

Random Matrix Theory and applications in cosmology Sbastien - PowerPoint PPT Presentation

Random Matrix Theory and applications in cosmology Sbastien Renaux-Petel CNRS - Institut dAstrophysique de Paris IESC Cargse, 5th and 6th of September 2018 School Analytics, Inference, and Computation in Cosmology: Advanced methods


  1. Random Matrix Theory and applications in cosmology Sébastien Renaux-Petel CNRS - Institut d’Astrophysique de Paris IESC Cargèse, 5th and 6th of September 2018 School Analytics, Inference, and Computation in Cosmology: Advanced methods

  2. Outline 1. Introduction 2. The Gaussian Ensemble(s) 3. The Coulomb gas approach 4. The resolvent approach 5. High-energy landscape Renaux-Petel, IAP

  3. Outline Introduction 1. 2. The Gaussian Ensemble(s) 3. The Coulomb gas approach 4. The resolvent approach 5. High-energy landscape Renaux-Petel, IAP

  4. Random Matrix Theory and applications … Economy Physics & finance RMT Mathematics Biology Statistics Information theory « The Oxford handbook of random matrix theory » Renaux-Petel, IAP

  5. Wigner’s surmise Hard to compute from first principles! Heavy nucleus 1956: possible shape of distribution Q: of the spacing of energy levels? p ( s ) = s 4 s 2 2 e − 1 A: Wigner: Renaux-Petel, IAP

  6. Wigner and Dyson’s idea Energy levels = eigenvalues of Hamiltonian Hamiltonian: large complicated Hermitian matrix Let us model it as a random matrix! Renaux-Petel, IAP

  7. Wigner’s semicircle law From math-ph:1712.07903 « Introduction to Random Matrices - Theory and Practice » Renaux-Petel, IAP

  8. Universality Universal behaviors emerge independently of details of distributions of entries Take real symmetric matrix - independent entries - - entries decay sufficiently fast at infinity - (normalization) Renaux-Petel, IAP

  9. Classification Renaux-Petel, IAP

  10. Outline 1. Introduction 2. The Gaussian Ensemble(s) 3. The Coulomb gas approach 4. The resolvent approach 5. High-energy landscape Renaux-Petel, IAP

  11. Gaussian ensemble: construction Simplest starting point: N  1 �� Y − M 2 � ρ [ M ] ≡ ρ ( M 11 , . . . , M NN ) = 2 π exp ij / 2 √ i,j =1 H = 1 2( M + M T ) Symmetrization: " # Y " # N � − ( H ) 2 � � � − ( H ) 2 exp exp ii / 2 Independent ij Y ρ ( H ) = √ √ π entries 2 π i =1 i<j Rotational 2 Tr( H 2 ) ρ ( H ) ∝ exp − 1 invariance Renaux-Petel, IAP

  12. Gaussian ensemble: pdf of eigenvalues ρ ( x 1 , . . . , x N ) = 1 P N i =1 x 2 Z e − 1 i Y | x j − x k | β Result: 2 j<k β = (1 , 2 , 4) Dyson index (GOE, GUE, GSE) Sketch of proof: with { X = diag( x 1 , . . . , x N ) H = OXO T OO T = 1 Change of variables H → { x , O } ρ ( x , O ) = ρ ( H ( x , O )) | J ( H → { x , O } ) | ˆ Renaux-Petel, IAP

  13. Gaussian ensemble: pdf of eigenvalues Sketch of proof (ctd): Vandermonde Y J ( H → { x , O } ) = ( x j − x i ) determinant i<j For rotationally invariant ensembles ρ ( H ) = ϕ (Tr H, . . . Tr( H N )) Integrating over O is trivial ⇣X ⌘ Y X x N ρ ( x 1 , . . . , x N ) ∝ ϕ | x j − x k | x i , . . . , i j<k Renaux-Petel, IAP

  14. Gaussian ensemble: pdf of eigenvalues ρ ( x 1 , . . . , x N ) = 1 P N i =1 x 2 Z e − 1 i Y | x j − x k | β 2 j<k Kills configurations Kills configurations with ‘large’ xi where any two eigenvalues are ‘close’ Interplay between confinement and eigenvalue repulsion Renaux-Petel, IAP

  15. Spectral density N n ( x ) ≡ 1 Counting function X δ ( x − x i ) of eigenvalues N i =1 For random matrix, n becomes a random measure Z h n ( x ) i = d x 2 . . . d x N ρ ( x, x 2 , . . . , x N ) ⌘ ρ ( x ) Spectral density = marginal density of jpdf of eigenvalues N →∞ ρ SC ( x ) = 1 p p p 2 − x 2 β N ρ N ( β Nx ) − Result: − − − → π How to prove this? Coulomb gas and resolvent Renaux-Petel, IAP

  16. Outline 1. Introduction 2. The Gaussian Ensemble(s) 3. The Coulomb gas approach 4. The resolvent approach 5. High-energy landscape Renaux-Petel, IAP

  17. The Coulomb gas p Rescaling β N x i → x i N Z dx j e − β N 2 V [ x ] Y Z N, β ∝ R N j =1 with 1 1 X X x 2 V [ x ] = ln | x i − x j | i − 2 N 2 N 2 i i 6 = j Z = Canonical partition function of fluid of particles of positions xi on a line - β N 2 in equilibrium at inverse temperature - with quadratic potential - and repulsive logarithmic potential - Renaux-Petel, IAP

  18. The Coulomb gas 2D static fluid of charged particles confined on a line, with quadratic potential Large N 0 temperature limit To find equilibrium position at 0 temperature 1 Minimize intensive free energy F = − β N 2 ln Z N, β Z D n ( x ) e − β N 2 F [ n ( x )] Z N, β = 1) continuum description Aim: Functional integral n ? ( x ) = ρ ( x ) over counting functions 2) saddle-point Renaux-Petel, IAP

  19. Continuum description 1). Coarse-graining - sum over micro states compatible with given Idea: macrostate (counting function) - then sum over all possible counting functions " # N Z n ( x ) − 1 X 1 = D [ n ( x )] δ δ ( x − x i ) N i =1 " # N N n ( x ) − 1 Z Z dx j e − β N 2 V [ x ] δ Y X D [ n ( x )] δ ( x − x i ) Z ∼ N R N j =1 i =1 Renaux-Petel, IAP

  20. Continuum description 2). From sums to integrals N n ( x ) f ( x ) dx = 1 Z X f ( x i ) N R i =1 N 1 ZZ X R 2 dxdx 0 n ( x ) n ( x 0 ) g ( x, x 0 ) = g ( x i , x j ) N 2 i,j =1 " # N N Z Z n ( x ) − 1 Y X D [ n ( x )] e − β N 2 V [ n ( x )] δ ( x − x i ) Z ∼ dx j δ N R N j =1 i =1 | {z } with I N [ n ( x )] V [ n ( x )] = 1 dx x 2 n ( x ) − 1 Z ZZ R 2 dxdx 0 n ( x ) n ( x 0 ) ln | x − x 0 | 2 2 R + regularization Renaux-Petel, IAP

  21. Continuum description 3). Compute I N [ n ( x )]  � Z I N [ n ( x )] ∼ exp [entropy] ∼ exp dx n ( x ) ln n ( x ) − N Summary: Z Z dk e − β N 2 S [ n ( x ) ,k ]+ o ( N 2 ) D [ n ( x )] Z ∼ R ✓Z ◆ S [ n ( x ) , κ ] = V [ n ( x )] − k dx n ( x ) − 1 Renaux-Petel, IAP

  22. Saddle-point Z ∼ exp( − β N 2 S [ n ? ( x ) , k ? ]) 8 � R dx 0 n ? ( x 0 ) ln | x − x 0 | − k ? , k = k ? = x 2 � R 0 = � n ( x ) S [ n ( x ) , k ] � 2 − � n = n ? > < � @ R dx n ? ( x ) = 1 , R 0 = @ k S [ n ( x ) , k ] � k = k ? ⇒ � n = n ? > : n ? ( x ) ( a, b ) Look for and support ! n ? ( x ; a, b ) 1) find 2) find optimal (a,b) by minimizing free energy F = S [ n ? ( x ; a, b )] Renaux-Petel, IAP

  23. Saddle-point dx 0 n ? ( x 0 ) Z PV x − x 0 = x Tricomi's theorem: √ R b ( t � a )( b � t ) Z b dt C − PV g ( t ) dx 0 f ( x 0 ) a x � t π PV x − x 0 = g ( x ) ⇒ f ( x ) = p ( x − a )( b − x ) π a  � 1 1 − x 2 + 1 2( a + b ) x + 1 8( b − a ) 2 1) n ? ( x ) = p ( x − a )( b − x ) π n ? ( x ) ≡ ρ SC ( x ) = 1 √ p 2 − x 2 2) − a = b = 2 π Renaux-Petel, IAP

  24. Outline 1. Introduction 2. The Gaussian Ensemble(s) 3. The Coulomb gas approach 4. The resolvent approach 5. High-energy landscape Renaux-Petel, IAP

  25. Resolvent: generalities N G N ( z ) ≡ 1 1 random complex function X with poles at eigenvalues’s location N z − x i i =1 Resolvent dx 0 ρ ( x 0 ) Z z � x 0 ⌘ G ( av ) Stieltjes transform h G N ( z ) i ! 1 ( z ) Green’s function ⇢ ( x ) = 1 ✏ → 0 + Im G ( av ) ⇡ lim ∞ ( x − i ✏ ) Easy to deduce the spectral density from the resolvent Renaux-Petel, IAP

  26. Resolvent for Gaussian Ensemble 1 = 1 1 1 x i ∂ V [ x ] = 0 ⇒ x i = 1 1 X X X X N ( z − x i ) ∂ x i N z − x i N x i − x j N x i − x j j 6 = i i i j 6 = i − 1 + zG N ( z ) = 1 N ( z ) + 1 2 G 2 2 N G 0 N ( z ) negligible in large N limit G ( av )2 ( z ) − 2 zG ( av ) ∞ ( z ) + 2 = 0 ∞ p G ( av ) z 2 − 2 ∞ ( z ) = z ± √ for x 2 < 2 1 1 ⇢ 2 − x 2 ✏ → 0 + ⇡ Im G ( av ) ∞ ( x − i ✏ ) − → ⇡ 0 otherwise Renaux-Petel, IAP

  27. Another classical ensemble: Wishart-Laguerre W = HH † ( M ≥ N ) with matrix H : N × M positive eigenvalues Entries: Eigenvalues: Renaux-Petel, IAP

  28. Wishart-Laguerre through the resolvent kept fixed Large N,M with With rescaling where Renaux-Petel, IAP

  29. Wishart-Laguerre through the resolvent where Renaux-Petel, IAP

  30. Marcenko-Pastur density 0.5 0.4 c = 1 / 8 0.3 c = 1 / 2 ρ MP ( x ) 0.2 0.1 0.0 0 5 10 15 x Renaux-Petel, IAP

  31. Marcenko-Pastur density 1.0 0.8 c = 1 0.6 c = 1 / 8 ρ MP ( x ) 0.4 c = 1 / 2 0.2 0.0 0 5 10 15 x Particular case c=1. Accumulation of eigenvalues near 0 Renaux-Petel, IAP

  32. Outline 1. Introduction 2. The Gaussian Ensemble(s) 3. The Coulomb gas approach 4. The resolvent approach 5.High-energy landscape Renaux-Petel, IAP

  33. High-energy landscape High-energy physics: large number of fields, complex interactions Statistical predictions? Universal behavior in large N limit? With landscape modeled as multi-dimensional scalar potential (say Gaussian random field) Vacua = local minima of potential = critical points+ all Hessian eigenvalues positive Dependence of dynamics of inflation on smallest eigenvalues of the Hessian Key Q: Hessian eigenvalue distribution of Gaussian random fields Renaux-Petel, IAP

  34. Gaussian Random Fields (GRF) Gaussian random field, static, statistically homogeneous h V ( ϕ ) i = ¯ and isotropic V ( φ ) with V All information in 2 pt correlation function: 1 Z V 2 = h V ( ϕ 1 ) V ( ϕ 2 ) i � ¯ d N k P ( k ) e i k · ( ϕ 1 − ϕ 2 ) (2 π ) N 1 Z d N k k 2 n P ( k ) σ 2 Define n ≡ (2 π ) N and correlation length For amplitude V 0 Λ ✓ N ◆ n σ 2 n ∼ V 2 0 Λ 2 Renaux-Petel, IAP

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend