random matrix improved covariance estimation for a large
play

Random Matrix Improved Covariance Estimation for a Large Class of - PowerPoint PPT Presentation

Random Matrix Improved Covariance Estimation for a Large Class of Metrics Malik TIOMOKO , Florent BOUCHARD, Guillaume GINOLHAC and Romain COUILLET GSTATS IDEX DataScience Chair, GIPSA-lab, University GrenobleAlpes, France. Laboratoire des


  1. Random Matrix Improved Covariance Estimation for a Large Class of Metrics Malik TIOMOKO , Florent BOUCHARD, Guillaume GINOLHAC and Romain COUILLET GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble–Alpes, France. Laboratoire des Signaux et Syst` emes (L2S), University Paris-Sud. LISTIC, University Savoie Mont-Blanc, France June 10, 2019 1 / 5

  2. Context Observations: ◮ X = [ x 1 , . . . , x n ] , x i ∈ R p with E [ x i ] = 0 , E [ x i x T i ] = C . 2 / 5

  3. Context Observations: ◮ X = [ x 1 , . . . , x n ] , x i ∈ R p with E [ x i ] = 0 , E [ x i x T i ] = C . Objective: ◮ From the data x i , estimate C . 2 / 5

  4. Context Observations: ◮ X = [ x 1 , . . . , x n ] , x i ∈ R p with E [ x i ] = 0 , E [ x i x T i ] = C . Objective: ◮ From the data x i , estimate C . State of the Art: ◮ Sample Covariance Matrix (SCM): n C = 1 i = 1 ˆ � x i x T n XX T . n i =1 2 / 5

  5. Context Observations: ◮ X = [ x 1 , . . . , x n ] , x i ∈ R p with E [ x i ] = 0 , E [ x i x T i ] = C . Objective: ◮ From the data x i , estimate C . State of the Art: ◮ Sample Covariance Matrix (SCM): n C = 1 i = 1 ˆ � x i x T n XX T . n i =1 → Often justified by Law of Large Numbers : n → ∞ . − 2 / 5

  6. Context Observations: ◮ X = [ x 1 , . . . , x n ] , x i ∈ R p with E [ x i ] = 0 , E [ x i x T i ] = C . Objective: ◮ From the data x i , estimate C . State of the Art: ◮ Sample Covariance Matrix (SCM): n C = 1 i = 1 ˆ � x i x T n XX T . n i =1 → Often justified by Law of Large Numbers : n → ∞ . − ◮ Numerical inversion of asymptotic spectrum (QuEST). 1. Bai-Silverstein equation: Estimate λ ( ˆ C ) from λ ( C ) in “large p, n ” regime. 2. Need for non trivial inversion of the equation. 2 / 5

  7. Key Idea ◮ Elementary idea C ≡ argmin M ≻ 0 δ ( M, C ) where δ ( M, C ) can be the Fisher, Bhattacharyya, KL, R´ enyi divergence. 3 / 5

  8. Key Idea ◮ Elementary idea C ≡ argmin M ≻ 0 δ ( M, C ) where δ ( M, C ) can be the Fisher, Bhattacharyya, KL, R´ enyi divergence. � p ◮ Divergence δ ( M, C ) = f ( t ) dν p ( t ) inaccessible, ν p ≡ 1 � i =1 δ λ i ( M − 1 C ) . p 3 / 5

  9. Key Idea ◮ Elementary idea C ≡ argmin M ≻ 0 δ ( M, C ) where δ ( M, C ) can be the Fisher, Bhattacharyya, KL, R´ enyi divergence. � p ◮ Divergence δ ( M, C ) = f ( t ) dν p ( t ) inaccessible, ν p ≡ 1 � i =1 δ λ i ( M − 1 C ) . p ◮ Random Matrix improved estimate ˆ δ ( M, X ) of δ ( M, C ) using µ p ≡ 1 � p i =1 δ λ i ( M − 1 ˆ C ) . p ✘ � � f ( t ) ν p ( dt ) h ( t ) µ p ( dt ) � � H ( m ν p ( z )) dz G ( m µ p ( z )) dz 3 / 5

  10. Key Idea ◮ Elementary idea C ≡ argmin M ≻ 0 δ ( M, C ) where δ ( M, C ) can be the Fisher, Bhattacharyya, KL, R´ enyi divergence. � p ◮ Divergence δ ( M, C ) = f ( t ) dν p ( t ) inaccessible, ν p ≡ 1 � i =1 δ λ i ( M − 1 C ) . p ◮ Random Matrix improved estimate ˆ δ ( M, X ) of δ ( M, C ) using µ p ≡ 1 � p i =1 δ λ i ( M − 1 ˆ C ) . p ✘ � � f ( t ) ν p ( dt ) h ( t ) µ p ( dt ) � � H ( m ν p ( z )) dz G ( m µ p ( z )) dz ◮ ˆ δ ( M, X ) < 0 with non zero probability. 3 / 5

  11. Key Idea ◮ Elementary idea C ≡ argmin M ≻ 0 δ ( M, C ) where δ ( M, C ) can be the Fisher, Bhattacharyya, KL, R´ enyi divergence. � p ◮ Divergence δ ( M, C ) = f ( t ) dν p ( t ) inaccessible, ν p ≡ 1 � i =1 δ λ i ( M − 1 C ) . p ◮ Random Matrix improved estimate ˆ δ ( M, X ) of δ ( M, C ) using µ p ≡ 1 � p i =1 δ λ i ( M − 1 ˆ C ) . p ✘ � � f ( t ) ν p ( dt ) h ( t ) µ p ( dt ) � � H ( m ν p ( z )) dz G ( m µ p ( z )) dz ◮ ˆ δ ( M, X ) < 0 with non zero probability. ◮ Proposed estimation 2 ˇ h ( M ) = ˆ C ≡ argmin M ≻ 0 h ( M ) , δ ( M, X ) 3 / 5

  12. Algorithm ◮ Gradient descent over the Positive Definite manifold. Algorithm 1 Proposed estimation algorithm. Require M 0 ∈ C ++ . n 1 � − tM − 1 2 ∇ h X ( M ) M − 1 � 1 2 exp 2 . Repeat M ← M M 2 Until Convergence. Return ˇ C = M . 4 / 5

  13. Experiments ◮ 2 Data classes x (1) 1 , . . . , x (1) n 1 ∼ N ( µ 1 , C 1 ) and x (2) 1 , . . . , x (2) n 2 ∼ N ( µ 2 , C 2 ) . ◮ Classify point x using Linear Discriminant Analysis based on the sign of C − 1 x + 1 µ 2 − 1 µ 2 ) T ˇ δ LDA µ T 2 ˇ C − 1 ˆ µ T 1 ˇ C − 1 ˆ = (ˆ µ 1 − ˆ 2 ˆ 2 ˆ µ 1 . x ◮ Estimate ˇ n 1 + n 2 ˇ n 1 n 1 + n 2 ˇ n 2 C ≡ C 1 + C 2 . 5 / 5

  14. Experiments ◮ 2 Data classes x (1) 1 , . . . , x (1) n 1 ∼ N ( µ 1 , C 1 ) and x (2) 1 , . . . , x (2) n 2 ∼ N ( µ 2 , C 2 ) . ◮ Classify point x using Linear Discriminant Analysis based on the sign of C − 1 x + 1 µ 2 − 1 µ 2 ) T ˇ δ LDA µ T 2 ˇ C − 1 ˆ µ T 1 ˇ C − 1 ˆ = (ˆ µ 1 − ˆ 2 ˆ 2 ˆ µ 1 . x ◮ Estimate ˇ n 1 + n 2 ˇ n 1 n 1 + n 2 ˇ n 2 C ≡ C 1 + C 2 . 1 1 0 . 95 0 . 95 Accuracy 0 . 9 0 . 9 0 . 85 0 . 85 SCM 0 . 8 QuEST1 0 . 8 QuEST2 Proposed 0 . 75 2 3 4 5 6 B/E A/E B/D A/D B/C A/C n 1 + n 2 (Healthy/Epileptic) p Figure: Mean accuracy obtained over 10 realizations of LDA classification. (Left) C 1 and C 2 Toeplitz- 0 . 2 /Toeplitz- 0 . 4 , and (Right) real EEG data. 5 / 5

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend