radiation transfer with scattering process
play

Radiation Transfer with Scattering Process Yoshiaki Kato (NAOJ) - PowerPoint PPT Presentation

Radiation Transfer with Scattering Process Yoshiaki Kato (NAOJ) Radiation Transfer Equation with Scattering Process Line Profile Formation Scattering Processes Complete Frequency Re-Distribution (CRD) Partial


  1. Radiation Transfer with Scattering Process Yoshiaki Kato (NAOJ) ‣ Radiation Transfer Equation with Scattering Process ‣ Line Profile Formation ‣ Scattering Processes ✓ Complete “Frequency” Re-Distribution (CRD) ✓ Partial “Frequency” Re-Distribution (PRD) 1 Friday, September 14, 12

  2. Radiative Transfer Equations with Scattering Process “Classical” Radiative Transfer Equation I ν ( r , t ; n ) : specific intensity χ ν ( r , t ; n ) = κ ν + σ ν : extinction coe ffi cient Source Function ε ν ( r , t ; n ) : emissivity 2 Friday, September 14, 12

  3. Derivation of RT Equations #0 Description of the Radiation Field • Intensity I ( x, y, z, t ; θ , ϕ , ν ) dA d Ω dE = I dt dA d Ω d ν ( x, y, z ) ( θ , ϕ ) • Photon distribution function: f R I ( x , t ; n , ν ) = ch ν h 3 ν 2 c 3 f R ( x , t ; n , ν ) f R : 6-dimensional phase space 3 Friday, September 14, 12

  4. Derivation of RT Equations #1 Relation to Boltzmann Transport Equation • Boltzmann Transport Equation � Df R � ∂ f R ∂ t + v · ∂ f R ∂ x + F · ∂ f R ∂ p = Dt coll • Radiative Transfer Equation 1 ∂ I ∂ t + n · ∇ I = χ ( S − I ) c = η − χ I η ( x , t ; n , ν ) : emissivity χ ( x , t ; n , ν ) : opacity per unit length 4 Friday, September 14, 12

  5. v , ) p , n ; t x ( ( χ - ) p , n 1 x 1 7 o F ) 5 . 6 ( , 。 ) y , n ; t ; , a / n ( 十 ) 1 ∂ ∂ ▽ ( ) 尋 贈 ( n e ・ ) x p ( l r ・ = ) , ] n ; 1 , x ( f r o t 三 1 ∂ / ∂ ( ) 嶺 + ( o t s e c u ) 1 e ] ; 1 , z ( 1 ) 1 z ∂ / ) i ( . d り n i l p l a n o s n n e m i d - e a a 5 r . 6 7 ( , e e r h p s o m t a h s 1 o t a n i d r o s c n a i s e t e ま ゜ 郎 だ 十 ② 訂 十 ( だ ) だ ゜ n , £ + n y ; j 7 十 n , £ , ( 7 6 . 4 ) . 馬 r a ) z n 。 , w x n ( e r e h Themathematicalexpressionfor(∂/∂s)dependsongeometry.lnCar- ) c n ) I H ( n i e ( が e r a y r o , L 1 ( 0 ( , ) 3 L λ : 2 L ( , ) . 1 e o i g . n o i t a a h p o r p f o n T e i q n o i t a u e t r e f s n a r o t m f i n u e h t o v s t n e n o p t e c g e r i d e h t n c o l a n r o t 1 , h , 7 . 6 7 ’ ( n i e v i g e r a ) s t y 1 5 ( f i d r a a n i d r o n y i e 6 t f l ) 7 . 7 e ( 。 ) p , μ ; h o v e i s s i l n d p n a y t i c a ’ n ( ・ o i t a u 4 e . l a i t n e r n l i n s m r e t g i f r e t t a c s e f t i i h w , n o t e a u q e l a i l ( i a d l a i t r p 7 a s i ) 6 . 6 z 1 1 n t s r o f d a t ) 6 . 6 7 ( 。 a i z t o n y d a e s c r o a i d e m ) l s 1 ) ・ 1 , 1 ; , χ z ( 1 7 = ) ・ - ( , ) μ ; 1 4 ( f z z l 。 4 1 ; 1 , w t ) ) ・ = ] z ∂ / z l l , μ ; z ( 1 y ( [ ( j l , μ ; z ・ z λ - ) p , μ ; ∂ μ h i e v i t a v r a e d e m i t e c n g , n i d l e i y d b e p p o r d e e 1 t q n o i t a u e s r e f s n a r i d e a c - s o r c m a , l a c i s s t h p ) e d e h T . s i ∂ / ∂ ( e t a r v t g f o n e v i t a s u j n o i t o i l c c u s o t e n i e r e f e r s h m i e a n e m o n d p p t n a t r o t m c o o l o n e m n i e h p d n a , g c o c t l . r e t a a r a h c n i l u a l e h t a p t n d e n e p e d n i l n e ) i l p ) l a 3 g . 6 7 ( , h t - t s ; 工(x+△x,t+△t;n,y) FOUNDATIONSOFRADIATIONHYDRODYNAMICS ) ・ , n t B , 輿 ( 工 4 3 3 皿g.76.1Pencilofradiationpassingthroughamaterialelement. e a c n i d r o o a c s i s e s u a e i v a o r ) 1 ) l n r a e s u e w d p i d s e o t n o i s a e r p x e e t e i n a r o o c y r 丿 i I - t i b r a d n v s o ’ 1 ) : I , m a e t s y s e t i h s a ( r e f s n ° q l t e v i t a 5 u d v P ( n i n e i a g s i n o i t i a , h d i l a v e p t d n a , n i t i y ‘ s 1 1 a c i s a o l c e h t , f 3 4 e h t n i o p e t f m o r f n o i o v a t l e i f m u n i a u q f o w e t u 7 d s u c s i d o i o G . ) 9 4 - s o q a e r e f s n r n t e h t f o s n t r a n a u q d n , u e c n e r e f t m e n i h w f o e o e e , s t c e f r t h i s i d , n o t e a z i r a l o p r n r i , e c n e e s h o c , n o i c n a r h t f o n o s a s u c s i d t e p e i h n i s n o t p a m i c ) o r n i l l r c s e d y l b c e r r o c e i t e ) d c x e n A . e 3 . 6 7 ( y b Derivation of RT Equations #2 Classical, macroscopic, and phenomenological derivation [ I ( x + ∆ x , t + ∆ t ; n , ν ) − I ( x , t ; n , ν )] dSdtd ω d ν � 1 � ∂ I ( x , t ; n , ν ) + ∂ I ( x , t ; n , ν ) = dsdSdtd ω d ν c ∂ t ∂ s = [ η ( x , t ; n , ν ) − χ ( x , t ; n , ν ) I ( x , t ; n , ν )] dsdSdtd ω d ν 1 ∂ I ( x , t ; n , ν ) + ∂ I ( x , t ; n , ν ) = η ( x , t ; n , ν ) − χ ( x , t ; n , ν ) I ( x , t ; n , ν ) ∂ t ∂ s c 5 Friday, September 14, 12

  6. Derivation of RT Equations #3 Schematics of RT Equation with Scattering n ′ Scattering Scattering n χ S − χ I Absorption Emission x � � 1 � ∂ I I ( n ′ ) φ ( n , n ′ ) d Ω ∂ t + n · ∇ I = χ abs B + χ sca − ( χ abs + χ sca ) I c 1 ∂ I ∂ t + n · ∇ I = χ ( S − I ) c 6 Friday, September 14, 12

  7. Radiative Transfer Equations Opacity and Level populations Opacity � π e 2 � Φ ij ( ν ) : the spectral line profile function κ ( ν ij ) = n i f ij Φ ij ( ν ) m 0 c � 2 2 ν 2 � γ ν � � σ ( ν ) = π e 2 → π e 2 1 2 π 2 γ ν 0 � 2 f s f s ( ν − ν 0 ) 2 + ( γ / 4 π ) 2 0 ) 2 + ν 2 � γ m 0 c m 0 c 4 π ( ν 2 − ν 2 2 π Rate Equations (Spontaneous + Induced + Collisional rates) dn i � � � � � � dt = − n i A ij + B ij U ν ij + C ij n j A ji + B ji U ν ij + C ji + j � = i j � = i A ij , B ij : radiative processes C ij : collisional processes U ν ij radiation energy density in the range between h ν ij = ε i − ε j 7 Friday, September 14, 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend