quasisymmetric refinements of schur functions steph van
play

Quasisymmetric refinements of Schur functions Steph van Willigenburg - PowerPoint PPT Presentation

Quasisymmetric refinements of Schur functions Steph van Willigenburg University of British Columbia Triangle Lectures in Combinatorics, April 2011 with Christine Bessenrodt, Jim Haglund, Kurt Luoto, Sarah Mason 1 Compositions and partitions A


  1. Quasisymmetric refinements of Schur functions Steph van Willigenburg University of British Columbia Triangle Lectures in Combinatorics, April 2011 with Christine Bessenrodt, Jim Haglund, Kurt Luoto, Sarah Mason 1

  2. Compositions and partitions A composition α 1 . . . α k of n is a list of positive integers whose sum is n : 2213 � 8. A composition is a partition if α 1 ≥ α 2 ≥ . . . ≥ α k > 0: 3221 ⊢ 8. Any composition determines a partition: λ (2213) = 3221. α = α 1 . . . α k is a coarsening of β = β 1 . . . β l ( β is a refinement of α ) if β 1 + . . . + β i β i +1 + . . . + β j . . . β m + . . . + β l � �� � � �� � � �� � α 1 α 2 α k is true: 53 � 2213. 2

  3. Quasisymmetric functions Let QSym be the algebra of quasisymmetric functions QSym := QSym 0 ⊕ QSym 1 ⊕ · · · ⊂ Q [ x 1 , x 2 , . . . ] QSym n := span Q { M α | α = α 1 . . . α k � n } = span Q { F α | α � n } � i 2 · · · x α k � x α 1 i 1 x α 2 M α := F α = M β i k i 1 <i 2 < ··· <i k α � β i 1 <i 2 <i 3 x 1 i 1 x 2 i 2 x 1 Example M 121 = � i 3 , F 121 = M 121 + M 1111 → QSym via m λ = � Remark Sym ֒ λ ( α )= λ M α . 3

  4. Why quasisymmetric functions? • Generating functions for P-partitions, posets, matroids (Ges- sel 83, Ehrenborg 96, Stembridge 97, Petersen 07, Luoto 09, Billera-Jia-Reiner 09). • Combinatorial Hopf algebras (Ehrenborg 96, Aguiar-Bergeron- Sottile 06). • Dual to cd-index (Billera-Hsiao-vW 03). • Random walks (Stanley 01, Hsiao-Hersh 09). • Simplify Macdonald polys (Haglund-Luoto-Mason-vW 09). • Other types, coloured, shifted (Billey-Haiman 95, Hsiao-Petersen 10). 4

  5. Diagrams and tableaux The diagram λ = λ 1 ≥ . . . ≥ λ k > 0 is the array of boxes with λ i boxes in row i from the top. 431 A (standard) reverse tableau T of shape λ is a filling of λ with (each first n ) 1 , 2 , 3 , . . . so rows weakly decrease and columns strictly decrease. 5

  6. Diagrams and tableaux The diagram λ = λ 1 ≥ . . . ≥ λ k > 0 is the array of boxes with λ i boxes in row i from the top. 8 7 3 1 6 4 2 5 431 A (standard) reverse tableau T of shape λ is a filling of λ with (each first n ) 1 , 2 , 3 , . . . so rows weakly decrease and columns strictly decrease. 6

  7. Composition diagrams and tableaux The composition diagram α = α 1 . . . α k > 0 is the array of boxes with α i boxes in row i from the top. 413 A (standard) composition tableau of shape α is a filling of α with (each first n ) 1 , 2 , 3 , . . . such that 7

  8. Rules for composition tableaux • First column entries strictly increase top to bottom. • Rows weakly decrease left to right. • If b ≤ c then b < a . Example c a b 8

  9. Rules for composition tableaux • First column entries strictly increase top to bottom. • Rows weakly decrease left to right. • If b ≤ c then b < a . Example c a b 9

  10. Rules for composition tableaux • First column entries strictly increase top to bottom. • Rows weakly decrease left to right. • If b ≤ c then b < a . Example 5 4 3 1 6 8 7 2 10

  11. Quasisymmetric Schur functions If x T := x #1 s x #2 s x #3 s . . . then QSym n = span Q {S α | α � n } 1 2 3 where � x T S α = T ∈ CT ( α ) Example 11

  12. Quasisymmetric Schur functions If x T := x #1 s x #2 s x #3 s . . . then QSym n = span Q {S α | α � n } 1 2 3 where � x T S α = T ∈ CT ( α ) Example S 12 = x 1 x 2 2 + x 1 x 2 x 3 + x 1 x 2 3 + x 2 x 2 3 from 1 1 1 2 2 2 3 2 3 3 3 3 s λ = � λ ( α )= λ S α as m λ = � λ ( α )= λ M α . 12

  13. Quasisymmetric Kostka numbers For λ ⊢ n � s λ = K λµ m µ µ where K λµ = number of reverse tableaux T of shape λ and µ 1 1s, µ 2 2s, . . . For α � n � S α = K αβ M β β where K αβ = number of composition tableaux T of shape α and β 1 1s, β 2 2s, . . . 13

  14. Young’s lattice: L Y Partial order on partitions with covers • add 1 at end: 211 < 2111 • add 1 to leftmost part of size: 211 < 221, 211 < 311. saturated chains in L Y ↔ standard skew RT from µ to λ shape λ/µ Example 32 < 321 < 331 < 431 ↔ • • • 1 • • 2 3 14

  15. Composition poset: L C Partial order on compositions with covers • add 1 at start: 121 < 1121 • add 1 to leftmost part of size: 121 < 221, 121 < 131. saturated chains in L C ↔ standard skew CT from α to β shape β//α Example 23 < 123 < 133 < 143 ↔ 3 • • 2 1 • • • 15

  16. Descents and sets T standard (skew) tableau, Des ( T ) = { i | i + 1 weakly east } : 8 7 3 1 6 4 2 5 composition α 1 . . . α k � n ↔ subset { i 1 , . . . , i k − 1 } ⊆ [ n − 1] β 2312 � 8 ↔ { 2 , 5 , 6 } ⊆ [7] Set ( β ) 16

  17. Quasisymmetric skew Schur functions Skew Schur functions � � c λ c λ s λ/µ = F δ = µν : +ve integers µν s ν ν where Set ( δ ) = Des ( T ), T ∈ SRT ( λ/µ ). Quasisymmetric skew Schur functions � � C γ C γ S γ//β = F δ = αβ S α αβ : +ve integers α where Set ( δ ) = Des ( T ), T ∈ SCT ( γ//β ). λ ( γ )= λ C γ If λ ( α ) = µ, λ ( β ) = ν then c λ µν = � αβ 17

  18. What other Schur properties do S α have? • Z -basis for QSym . Expression in F β . ✔ • Quasisymmetric Pieri, LR rules. ✔ • Involution gives row strict versions (Mason-Remmel 10, Fer- reira 11) ✔ • Confirmed QSym over Sym has a stable basis (Lauve-Mason 10). “Just switch partition to composition” 18

  19. Further properties? Other properties: • Jacobi-Trudi, Giambelli (quasi-) determinantal formulae? • Representation theoretic interpretation from F β ? • L C properties? • Normal or Kronecker (inner) product? Other applications: • Quasisymmetric Macdonald polynomials? • Skew Macdonald polynomials? • Product of Schubert polynomials? • Impact on QSym of different types? 19

  20. Link to NC Schurs of Fomin and Greene P graded edge labelled poset, labels ( B, < ). For x ∈ P � x. h k = end ( ω ) ω ω : x b 1 b 2 b k → x 1 → · · · → x k = end ( ω ) for saturated ω , b 1 ≤ b 2 ≤ · · · ≤ b k ∈ B . For [ x, y ] of P � K [ x,y ] = � x. h α , y � M α � , � = δ ij α Example Skew Schur functions, Stanley symmetric functions, NC Schurs Fomin+Greene (Bergeron-Mykytiuk-Sottile-vW 00). 20

  21. A new example Let L ′ C be the dual poset of L C edges labelled x ( − col, − row ) ˜ − → x and ( i, j ) < ( k, ℓ ) iff i < k or ( i = k = − 1 and j > ℓ ) or ( i = k < − 1 and j < ℓ ). Then K [ β,α ] = S β//α . 21

  22. Link to NC Schurs of Rosas and Sagan A set composition of [ n ] = { 1 , . . . , n } is an ordered partitioning of [ n ]: Φ = 36 / 489 / 2 / 157 � [9] with underlying composition α (Φ) = 2313. A set partition of [ n ] reorders by least element: ˜ Φ = 157 / 2 / 36 / 489 ⊢ [9] with underlying partition λ (Φ) = 3321. 22

  23. Symmetric functions in noncommuting variables (Wolfe 36, Rosas-Sagan 06) NCSym := NCSym 0 ⊕ NCSym 1 ⊕ · · · ⊂ Q � x 1 , x 2 , . . . � where NCSym n := span Q { m π | π ⊢ [ n ] } � m π := x i 1 x i 2 · · · x i n and i j = i k iff j, k ∈ π m Example m 13 / 2 = x 1 x 2 x 1 + x 2 x 1 x 2 + x 1 x 3 x 1 + x 3 x 1 x 3 . . . 23

  24. NC Schurs of Rosas and Sagan For T ∈ RT ( λ ) let ˙ T have 1 entry with k dots k = 1 , 2 , 3 . . . then x ˙ T = � � � S RS = µ ! K λµ m π λ µ T ∈ RT ( λ ) λ ( π )= µ where x ˙ T = monomial x i in position j if T has i with j dots. Example 2 ... ˙ 1 x 2 x 3 x 1 ❀ ¨ 3 24

  25. Quasisymmetric functions in noncommuting variables (Aguiar-Majahan 06, Bergeron-Zabrocki 09) NCSym ⊂ NCQSym := NCQSym 0 ⊕ NCQSym 1 ⊕· · · ⊂ Q � x 1 , x 2 , . . . � where NCQSym n := span Q { M Π | Π � [ n ] } � M Π := x i 1 x i 2 · · · x i n • i j = i k iff j, k ∈ Π m • i j < i k iff j ∈ Π m 1 k ∈ Π m 2 and m 1 < m 2 . Example M 2 / 13 = x 2 x 1 x 2 + x 3 x 1 x 3 . . . 25

  26. � � NC quasisymmetric Schurs Let x ˙ T = � � � S RS = β ! K αβ M Π α β T ∈ CT ( α ) α (Π)= β Furthermore � λ ( α )= λ S RS S RS α λ χ Rosas − Sagan ❀ χ n ! � λ ( α )= λ S α n ! s λ 26

  27. Link to free Schurs of Poirier and Reutenauer (95) PR := span Q { T | T ∈ SRT } If T 1 ∈ SRT ( µ ) and T 2 ∈ SRT ( ν ) then T 1 ∗ T 2 = � SRT T where • T | µ = T 1 + | ν | • rect ( T \ µ ) = T 2 . Example 3 1 ∗ 1 = 4 2 1 + 4 2 + 4 2 2 3 3 1 3 1 27

  28. Bijection (Mason 06): ρ : SCT → SRT The map takes 5 4 3 1 8 7 3 1 �→ 6 6 4 2 8 7 2 5 Connection: φ : PR → QSym ∗ If φ ( T ) = S ∗ α where ρ − 1 ( T ) ∈ SCT ( α ) then φ ( T 1 ∗ T 2 ) = φ ( T 2 ) ⋆ φ ( T 1 ) . 28

  29. Further reading • Skew quasisymmetric Schur functions and noncommutative Schur functions (with Bessenrodt and Luoto), Adv. Math., 226:4492–4532 (2011) . • Refinements of the Littlewood-Richardson rule (with Haglund, Luoto and Mason), Trans. Amer. Math. Soc. 363:1665–1686 (2011). • Quasisymmetric Schur functions (with Haglund, Luoto and Mason), J. Combin. Theory Ser. A 118: 463–490 (2011). Thank you! 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend