quarks and flavour degrees of freedom in ads cft from
play

Quarks and flavour degrees of freedom in AdS/CFT from string theory - PowerPoint PPT Presentation

. . Quarks and flavour degrees of freedom in AdS/CFT from string theory Johanna Erdmenger Max PlanckInstitut f ur Physik, M unchen 1 Based on joint work with M. Ammon, R. Apreda, J. Babington, N. Evans, Z. Guralnik, V. Gra, C.


  1. . . Quarks and flavour degrees of freedom in AdS/CFT from string theory Johanna Erdmenger Max Planck–Institut f¨ ur Physik, M¨ unchen 1

  2. Based on joint work with M. Ammon, R. Apreda, J. Babington, N. Evans, Z. Guralnik, V. Graß, C. Greubel, J. Große, M. Kaminski, P . Kerner, I. Kirsch, R. Meyer, H. Ngo, A. O’Bannon, F . Rust, R. Schmidt, T. Wrase See also talks by Andy O’Bannon, Patrick Kerner 2

  3. Outline 1. Top-down approach to AdS/CFT correspondence from string theory 2. Adding quarks (flavour degrees of freedom) to the AdS/CFT correspondence 3. Applications to elementary particle physics (strong interaction) 4. Applications to condensed matter physics (superconductivity) 3

  4. Top-down approach Use 10-dimensional (super)gravity actions obtained from string theory to describe Dual degrees of freedom in strongly coupled quantum field theory 4

  5. Introduction: String Theory Quantum Theory of Gravity and Unification of Interactions: Give up locality at very short distances Natural cutoff: String length 1 l s ∼ M P lanck , Open strings: Gauge interactions Closed strings: Gravity Higher oscillation modes may be excited ⇒ Particles 5

  6. Introduction: String Theory Quantization: Supersymmetric string theory is well-defined in 9 + 1 dimensions (no tachyons, no anomalies) Supersymmetry: Bosons ⇔ Fermions What is the meaning of the extra dimensions? 1. Compactification 2. D-Branes 6

  7. D-Branes D-branes are embedded in ten-dimensional space (Hypersurfaces) D3-Branes: (3+1)-dimensional hypersurfaces open strings may end on D-branes ⇔ dynamics 7

  8. D-Branes In low-energy limit (strings pointlike) ⇒ Open Strings ⇔ Field theory (Gauge theory) degrees of freedom on the brane Second interpretation of D-branes: Solitonic solutions of ten-dimensional supergravity heavy objects which curve the space around them Elementary excitations: closed strings 8

  9. AdS/CFT correspondence Map: Four-dimensional quantum field theory ⇔ 5 + 5 -dimensional (classical) gravity theory! arises from identifying the two different interpretations of D-branes D3 Branes ⇒ N = 4 Super Yang-Mills theory is dual to string theory on AdS 5 × S 5 9

  10. AdS/CFT correspondence (Maldacena 1997) Duality SU(N) gauge theory String Theory (Quantum) Gravity (Quantum) Saddle point approximation Duality Large N gauge theory Classical Gravity 10

  11. AdS/CFT correspondence Anti-de Sitter space is a curved space with constant negative curvature. It has a boundary. Metric: ds 2 = e 2 r/R η µν dx µ dx ν + dr 2 ds 2 = L 2 /u 2 ( η µν dx µ dx ν + du 2 ) or Isometry group of ( d + 1) -dimensional AdS space coincides with conformal group in d dimensions ( SO ( d, 2) ). SO (6) ≃ SU (4) : Isometry of S 5 ⇔ N = 4 Supersymmetry Dictionary: field theory operators ⇔ supergravity fields � d 2 ∆ = d 4 + R 2 m 2 O ∆ ↔ φ m , 2 + 11

  12. AdS/CFT correspondence Field-operator correspondence: d d x φ 0 ( � � R x ) O ( � x ) � CF T = Z sugra � e � � φ (0 ,� x )= φ 0 ( � x ) Generating functional for correlation functions of particular composite operators in the quantum field theory coincides with Classical tree diagram generating functional in supergravity 12

  13. String theory origin of AdS/CFT correspondence D3 branes in 10d duality AdS x S 5 5 near-horizon geometry ⇓ Low-energy limit N = 4 SU ( N ) theory in four Supergravity on AdS 5 × S 5 dimensions ( N → ∞ ) 13

  14. Generalized AdS/CFT Correspondence Generalizations: 1. Symmetry requirements are relaxed in a controlled way ⇒ Renormalization Group flows ⇒ Theories with confinement similar to QCD 2. More degrees of freedom are added (Example: quarks)

  15. Generalized AdS/CFT Correspondence Generalizations: 1. Symmetry requirements are relaxed in a controlled way ⇒ Renormalization Group flows ⇒ Theories with confinement similar to QCD 2. More degrees of freedom are added (Example: quarks) Strongly coupled quantum field theories (difficult to solve) are mapped to Weakly coupled gravity theories (easy to solve) 14

  16. Quarks (fundamental fields) from brane probes D3 N ������������ ������������ conventional 0123 ������������ ������������ ��������� ��������� open/closed string duality ������������ ������������ ��������� ��������� SYM 4567 ������������ ������������ ��������� ��������� AdS 5 89 ������������ ������������ ��������� ��������� 3−3 ������������ ������������ ��������� ��������� ������������ ������������ ��������� ��������� quarks ������������ ������������ ��������� ��������� 3−7 7−7 ������������ ������������ ��������� ��������� flavour open/open ������������ ������������ ��������� ��������� string duality N probe D7 ������������ ������������ AdS ��������� ��������� f R 4 5 ������������ ������������ ��������� ��������� brane N → ∞ (standard Maldacena limit), N f small (probe approximation) duality acts twice: N = 4 SU(N) Super Yang-Mills theory IIB supergravity on AdS 5 × S 5 ← → coupled to + Probe brane DBI on AdS 5 × S 3 N = 2 fundamental hypermultiplet Karch, Katz 2002 15

  17. Chiral symmetry breaking within generalized AdS/CFT Combine the deformation of the supergravity metric with the addition of brane probes: Dual gravity description of chiral symmetry breaking and Goldstone bosons J. Babington, J. E., N. Evans, Z. Guralnik and I. Kirsch, “Chiral symmetry breaking and pions in non-SUSY gauge/gravity duals” hep-th/0306018, Phys. Rev. D 69 (2004) 066007 16

  18. Light mesons Babington, J.E., Evans, Guralnik, Kirsch PRD 2004 Meson masses obtained from fluctuations of hypersurface probe D7-brane in a confining non-supersymmetric ten-dimensional gravity background π pseudoscalar meson mass: From fluctuations of D-brane ρ vector meson mass: From fluctuations of gauge field on D-brane 17

  19. D7 brane probe in deformed backgrounds D7 brane probe in gravity backgrounds dual to confining gauge theories without supersymmetry. Example: (particular deformation of AdS 5 × S 5 metric) Constable-Myers background The deformation introduces a new scale into the metric. In UV limit, geometry returns to AdS 5 × S 5 with D7 probe wrapping AdS 5 × S 3 . 18

  20. General strategy 1. Start from Dirac-Born-Infeld action for a D7-brane embedded in deformed background 2. Derive equations of motion for transverse scalars ( w 5 , w 6 ) 3. Solve equations of motion numerically using shooting techniques Solution determines embedding of D7-brane (e.g. w 5 = 0 , w 6 = w 6 ( ρ ) ) 4. Meson spectrum: Consider fluctuations δw 5 , δw 6 around a background solution obtained in 3. Solve equations of motion linearized in δw 5 , δw 6 19

  21. Asymptotic behaviour of supergravity solutions UV asymptotic behaviour of solutions to equation of motion: w 6 ∝ m e − r + c e − 3 r Identification of the coefficients as in the standard AdS/CFT correspondence: m quark mass, c = � ¯ qq � quark condensate Here: m � = 0 : explicit breaking of U (1) A symmetry c � = 0 : spontaneous breaking of U (1) A symmetry 20

  22. The Constable-Myers deformation N = 4 super Yang-Mills theory deformed by VEV for tr F µν F µν → non-supersymmetric QCD-like field theory (R-singlet operator with D = 4 ) The Constable-Myers background is given by the metric � (2 − δ ) / 4 w 4 − b 4 � w 4 + b 4 � δ/ 4 � w 4 + b 4 6 ds 2 = H − 1 / 2 � dx 2 4 + H 1 / 2 dw 2 i , w 4 − b 4 w 4 − b 4 w 4 i =1 where � w 4 + b 4 � δ (∆ 2 + δ 2 = 10) H = − 1 w 4 − b 4 and the dilaton and four-form � w 4 + b 4 � ∆ C (4) = − 1 e 2 φ = e 2 φ 0 4 H − 1 dt ∧ dx ∧ dy ∧ dz , w 4 − b 4 This background has a singularity at w = b 21

  23. Chiral symmetry breaking Solution of equation of motion for Numerical Result: w probe brane 6 2 w 6 1.75 m=1.5, c=0.90 1.5 m=1.25, c=1.03 1.25 m=1.0, c=1.18 1 m=0.8, c=1.31 s i n g u l m=0.6, c=1.45 0.75 a m=0.4, c=1.60 r 0.5 i m=0.2, c=1.73 bad t 0.25 y m=10^−6, c=1.85 good ugly ρ ρ 0.5 1 1.5 2 2.5 3 singularity c Result: Screening effect: Regular solutions 1.5 do not reach the singularity 1.0 Spontaneous breaking of U (1) A 0.5 symmetry: For m → 0 we have c ≡ � ¯ ψψ � � = 0 0 m 4.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 22

  24. Meson spectrum From fluctuations of the probe brane M 2 = − k 2 δw i ( x, ρ ) = f i ( ρ ) sin ( k · x ) , Ansatz: meson mass 6 5 4 3 2 1 quark mass 0.5 1 1.5 2 Goldstone boson ( η ′ ) Gell-Mann-Oakes-Renner relation: M Meson ∝ √ m Quark 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend