quantum information with solid state devices
play

Quantum Information with Solid-State Devices VO 141.A55 SS2016 - PowerPoint PPT Presentation

Quantum Information with Solid-State Devices VO 141.A55 SS2016 Dr. Johannes Majer Lecture 7 Next Lecture May 23rd @ Resselpark W IENER P HYSIKALISCHES K OLLOQUIUM TU-W IEN - U NIVERSITT W IEN SS 2016 Einladung zum Vortrag von Ignacio


  1. Quantum Information with Solid-State Devices VO 141.A55 SS2016 Dr. Johannes Majer Lecture 7

  2. Next Lecture May 23rd @ Resselpark

  3. W IENER P HYSIKALISCHES K OLLOQUIUM TU-W IEN - U NIVERSITÄT W IEN SS 2016 Einladung zum Vortrag von Ignacio Cirac Max-Planck-Institut für Quantenoptik München Quantum optics with emitters in waveguides Recent progress in nano-fabrication and atomic physics has allowed to couple atoms (or other emitters) to structured waveguides. In this talk I will report on:(i) a theoretical framework to describe some of those experiments using both a master equation and a path integral approach; (ii) the existence of many-photon bound states in the presence of one emitter; (iii) some techniques to prepare multi-photon states in the waveguide using strong coupling and collective effects. 9. Mai 2016, 17:30 hrs (ab 17 Uhr Kaffee) TU Wien-Freihaus, Wiedner Hauptstrasse 8 – 10 1040 Wien Hörsaal 5, 2. Stock, grüner Bereich http://wpk.univie.ac.at

  4. tunnel junction

  5. Shadow 1. elec t ron beam w rit ing 2. developm ent e - e - e - e - e - e - Evaporation PMMA PMMA PMMA PMMA/MAA Subst rat e 4. ox idat ion 3. first alum inum evaporat ion Al Al O 2 O 2 5. sec ond alum inum evaporat ion 6. lift -off Al Al

  6. RF SET LC tank circuit, impedance transformer

  7. ! 3 x 10 1 0.8 0.6 [( ! 2 ! ! 1 )/2 | 2E c /e] 0.4 Source Drain Voltage (V) 0.2 0 [1/2 | 0] ! 0.2 ! 0.4 [( ! 1 ! ! 2 )/2 | ! 2E c /e] ! 0.6 ! 0.8 ! 1 ! 1 ! 0.5 0 0.5 1 1.5 2 Gate Charge n g =(V g C g )/e

  8. Superconducting SET ! 3 x 10 2 1.5 [( ! /E c +1/2)( " 2 ! " 1 ) | 4 ! /e+2E c /e] 1 [ ! /E c ( " 2 ! " 1 )+1/2 | 4 ! /e] Source Drain Voltage (V) 0.5 C 2 C 2 e 0 C 1 C 1 e ! 0.5 [ ! /E c ( " 1 ! " 2 )+1/2 | ! 4 ! /e] 0 1 1 0 ! 1 [( ! /E c +1/2)( " 1 ! " 2 ) | ! 4 ! /e ! 2E c /e] ! 1.5 ! 2 ! 1 ! 0.5 0 0.5 1 1.5 2 Gate Charge n g =(V g C g )/e

  9. Josephson quasi particle cycle − 3 x 10 2 1.5 [ − κ 1 (3/2+ ∆ /E c )+1 | 2 ∆ /e + 3E c /e] [ κ 2 (3/2+ ∆ /E c ) − 1 | 2 ∆ /e + 3E c /e] 1 [ − κ 1 (1/2+ ∆ /E c )+1 | 2 ∆ /e + E c /e] 0.5 [ κ 2 (1/2+ ∆ /E c ) − 1| 2 ∆ /e + E c /e] 0 C 2 C 2 C 2 2e [ κ 2 (1/2+ ∆ /E c ) − 1 | − 2 ∆ /e − E c /e] [ − κ 1 (1/2+ ∆ /E c )+1 | − 2 ∆ /e − E c /e] − 0.5 C 1 C 1 C 1 e e − 1 [ κ 2 (3/2+ ∆ /E c ) − 1 | − 2 ∆ /e − 3E c /e] [ − κ 1 (3/2+ ∆ /E c )+1 | − 2 ∆ /e − 3E c /e] 0 2 2 1 1 0 − 1.5 − 2 − 1 − 0.5 0 0.5 1 1.5 2 Gate Charge n g =(V g C g )/e

  10. Superconducting RF-SET

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend