quantum entanglement and local operators
play

Quantum Entanglement and Local Operators Tadashi Takayanagi Yukawa - PowerPoint PPT Presentation

Strings 2014 @ Princeton, June 23-27th, 2014 Quantum Entanglement and Local Operators Tadashi Takayanagi Yukawa Institute for Theoretical Physics (YITP), Kyoto University Based on arXiv:1401.0539 [PRL 112(2014)111602] arXiv:1403.0702,


  1. Strings 2014 @ Princeton, June 23-27th, 2014 Quantum Entanglement and Local Operators Tadashi Takayanagi Yukawa Institute for Theoretical Physics (YITP), Kyoto University Based on arXiv:1401.0539 [PRL 112(2014)111602] arXiv:1403.0702, arXiv:1405.5946 (see also arXiv: arXiv:1302.5703 [JHEP05(2013)080]) with Pawel Caputa (YITP), Song He (YITP), Masahiro Nozaki (YITP) Tokiro Numasawa (YITP) and Kento Watanabe (YITP).

  2. ① Introduction In QFTs , the entanglement entropy (EE) provides us a universal physical quantity (~order parameter) . For example, we can characterize the degrees of freedom of CFTs (~central charges) from the EE for ground states. (i) 2d CFT [Holzhey-Larsen-Wilczek 94, Calabrese-Cardy 04,..] (ii) 3d CFT [F-th: Jafferis-Klebanov-Pufu-Safdi 11, Entropic proof: Casini-Huerta 12] (iii) 4d CFT [Ryu-TT 06, Solodukhin 08, Sinha-Myers 10, Casini-Huerta-Myers 11 ,…]

  3.   . H H H tot A B A B It is also helpful to look at (n-th) Renyi entanglement entropy (REE) which generalizes the EE : If we know all of , we find all eigenvalues of . (so called entanglement spectrum)

  4. In gravity , we might expect that quantum entanglement gives a quantum bit of spacetime (~ a plank size unit) . (i) BH entropy [Bekenstein 73, Hawking 75,…] (ii) Holographic EE (HEE) (iii) Entanglement/Gravity [Ryu-TT 06, Hubeny-Rangamani- TT 07,…] [Swingle 09, Raamsdonk 09, Myers 12, … ] MERA Entangler  [Vidal 05] A = AdS A B Planck length A

  5. The entanglement entropy is also a useful quantity to characterize excited states . Well-studied examples are quantum quenches: [Calabrese-Cardy 05, 07, …., Liu’s talk] (a) Global quantum quenches m(t)   .   /  S A c t t t* (b) Local quantum quenches   .    2 d log / S c t A Here we want to focus on more elementary excited states: (c) Local operator insertions at a time  ⇒ ? (The main aim of this talk) S A

  6. Consider excited states defined by local operators:  ( ) 0 . O x O(x)     .    We study ( ) ( ) ( ) n n n ( ) 0 S S O x S A A A ( n ) S ~ Loss of information when we assume A that the region B is invisible. ~ ``degrees of freedom’’ of the operator O.

  7. Two limits A B (1) In this case, we find a property analogous to   the first law of thermodynamics:    ( ) n S O E A A [Bhattacharya-Nozaki-Ugajin-TT 12, Blanco-Casini-Hung-Myers 13, Wong-Klich-Pando Zayas-Vaman 13 …, Raamsdonk’s talk] (2) This leads to a very `entropic’ quantity ! ⇒ The main purpose of this talk. [Nozaki-Numasawa-TT 14, He-Numasawa-Watanabe-TT 14, Caputa-Nozaki-TT 14]

  8. Contents ① Introduction ② Replica Calculations of EE for locally excited states ③ Case 1: Free scalar CFTs in any dimensions ④ Case 2: Rational 2d CFTs ⑤ Case 3: Large N CFTs and AdS/CFT ⑥ Conclusions

  9. ② Replica Calculations of EE for locally excited states (2-1) Replica method for ground states A basic method to find EE in QFTs is the replica method . In the path-integral formalism, the ground state wave  function can be expressed as follows:   t t t  0     , Path integrate x   

  10. t Then we can express [   t  A ]     0 as follows: Tr ab b A B A x    Glue each boundaries successive ly.    a b  n Tr   A a b  - sheeted n ( ) Z  n .   Riemann surface n ( ) Z n 1 cut sheets n

  11. (2-2) Replica Method for Excited States We want to calculate for        iHt H H iHt ( , ) ( ) 0 0 ( ) t x e e O x O x e e A    ( , ) 0 0 ( , ), O x O x e l       τ ε τ ε ( ), it, it e l  where is the UV regulator for the operator.   1 d Here we consider a 1 dim. CFT on R . d         1 d i  ( , , , , ) R We set . x x x x i re 1 2 1 d

  12. In this way, the Renyi EE can be expressed in terms of correlation functions (2n-point function etc.) on Σ n : 1         ( ) 1 1 n n n  log ( , ) ( , ) ( , ) ( , ) S O r O r O r O r    A l l e e l l e e  1 n n      log ( , ) ( , ) . n O r O r   l l e e  1 Σ n n-sheets

  13. ③ Case 1: Free scalar CFTs in any dimensions [Numasawa-Nozaki-TT 14] We focus on the free massless scalar field theory on Σ n           d 1 S d x  and calculate 2n-pt functions using the Green function:   1 / n 1 / n   1 a a      3 d [( , , ); ( , , )] , G r x s y            n 2 1 / 1 / n n 4 ( 1 / ) 2 cos ( ) / n rs a a a a n a rs  where .       2 2 2 2 1 | | a x y r s The operator is chosen as O   k . O : : k

  14. Time evolution in free massless scalar theory      We chose with 10 x l l       ( 2 ) 1 for : : (i.e. 1 ) S A O k        and 0 .  x x 2 d O   i 2 dim. ( : :) e 4 dim. 6 dim.  ( ) n f S A Interested quantities ! t l   2 2 t     ( 2 ) . . log . E g S    ( 4 dim) A 2 2   t l Note :  ( ) n f is `topologically invariant’ S A under deformations of A.

  15.      ( ) n f k for in d 1 2 dim. S O A Renyi Entropy EE [For a proof: Nozaki 14] EPR state !

  16. Heuristic Explanation First , notice that in free CFTs, there are definite (quasi) particles moving at the speed of light.       . L=A R=B L R left - moving right - moving    k      k j k j vac ( ) ( ) vac C  k j L R 0 j    k  / 2 k 2 . C j k j  k j 0 L R j   1      k ( ) n f nk n Agree with log 2 ( ) , S C   A k j 0 1 j n replica      k  f k log 2 2 log [ ]. S k C C Calculations !  A k j k j 0 j

  17. ④ Case 2: Rational 2d CFTs [He-Numasawa-Watanabe-TT 14] (4-1) Free Scalar CFT in 2d Consider following two operators in the free scalar CFT:  O     ( ) i n f (i) : : 0 . e S 1 A     i i ⇒ Direct product state 0 0 O e e L R 1 L R         ( ) n f (ii) i i : : : : log 2 . O e e S 2 A           i i i i 0 0 0 0 O e e e e L R L R 2 L R L R       ⇒ EPR state L R L R

  18. (4-2) General Results for 2d Rational CFTs First, focus on n=2 REE and assume O = a primary op.    We can employ the following conformal map: 2 1    i . z w re It is straightforward to rewrite the n=2 REE in terms of  1  C 4-pt functions on . ( , ) ( , ) ( , ) ( , ) O w w O w w O w w O w w  1 1 2 2 3 3 4 4 2 O     4 | | ( , ). z z G z z 13 24 O          ( ) , ( ) , w i it l w i it l   1 1 z z      12 34          , . z z z z   ( ) , ( ) . w i it l w i it l 2 2 ij i j   z z     2 2 i i 13 24 , . w e w w e w 3 1 4 2

  19.   0 We can show that the limit leads to  t  0 (i) Early time: l     2 2 ( , ) ( ( ), ( )) ( 0 , 0 ). z z O O Chiral Fusion t  l (ii) Late time: Transformation      2 2 z → 1-z ( , ) ( 1 ( ), ( )) ( 1 , 0 ). z z O O O(x) Subsystem A x  l 0 Note: It is straightforward to confirm   ( ) n 0 S at early time (i). A

  20. In terms of conformal block, we find at late time: O O      p ( , ) ( | ) ( | ) G z z C F p z F p z O OO O O p p p O O   ( | ) ( | ) F I z F I z O O ( , ) z z  ( 1 , 0 )        O z  2 2 [ ] ( 1 ) , F O z O , I I [ ] F , O where is so called the fusion matrix, defined by p q     ( | 1 ) [ ] ( | ). F p z F O F q z , O p q O q O O O O p q O O O O

  21. Then the n=2 REE is simply expressed at late time:    ( 2 ) f log [ ]. S F O , A I I In rational 2d CFTs, we can rewrite this in term of the quantum dimension d O S 1   , I O , d O [ ] S F O [Moore-Seiberg 89] , , I I I I   ( 2 ) f log . S d as follows: A O   ( ) n f log S d Actually, more generally we can prove A O for any n.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend